Skip to main content
Log in

Coevolution of the Technology on Transition-Edge-Sensor Spectrometer and Its Application to Fundamental Science

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

High-energy-resolution X-ray spectroscopy using X-ray microcalorimeters has been widely adopted for high-precision experiments on fundamental science. The technical difficulties come from its use at low temperatures and its high sensitivity to the external environment, though many countermeasures have been proposed through the experience of space applications. The limit of the number of pixels of the semiconductor-type X-ray microcalorimeters can be solved by using the transition-edge sensor (TES) superconducting detector. Recently, a study of the strong nuclear force via high-energy-resolution X-ray spectroscopy of kaonic atoms using TES at the J-PARC accelerator facility was successfully performed by the HEATES collaboration. Furthermore, muonic-atom spectroscopy using TES has been demonstrated at the J-PARC muon facility, and a physical experiment to test the electromagnetic force under a strong electric field is ready for commissioning. Material diagnostics at a hard X-ray synchrotron facility have been tested at SPring-8 and resulted in a successful operation for the first time. Other than X-rays, TES has been used as a mass spectrometer for neutral molecules in a cryogenic electrostatic ion ring. The entire design of the experiment is carefully considered to meet the science-specific requirement. We will summarize the latest and future applications of the microcalorimeter and present key technologies, such as digital electronics, data acquisition software, aperture, collimator, mechanical, and electrical interface. Our results will be helpful for other users to design new experiments for fundamental science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W.B. Doriese et al., Rev. Sci. Instrum. 88, 053108 (2017)

    Article  ADS  Google Scholar 

  2. S. Okada, HEATES Collaboration et al., Prog. Theor. Exp. Phys. 2016(9), 091D01 (2016). https://academic.oup.com/ptep/article/2016/9/091D01/2590795

  3. Hitomi Collaboration, Nature 535, 117–121 (2016)

    Article  ADS  Google Scholar 

  4. XRISM Collaboration, SPIE, Ultraviolet to Gamma Ray, 10699 (2018)

  5. S. Yamada et al., J. Low Temp. Phys. 184(3), 688–693 (2016)

    Article  ADS  Google Scholar 

  6. H. Tatsuno, HEATES Collaboration et al., J. Low Temp. Phys. 184, 930–937 (2016). https://link.springer.com/article/10.1007%2Fs10909-016-1491-2

    Article  ADS  Google Scholar 

  7. T. Hashimoto, HEATES Collaboration et al., IEEE Trans. Appl. Supercond. 27, 4 (2017)

    Article  Google Scholar 

  8. R.L. Kelley et al., Proc. SPIE 9905, 99050V (2016)

  9. J.N. Ullom, D.A. Bennett, Supercond. Sci. Technol. 28, 084003 (2015)

    Article  ADS  Google Scholar 

  10. C.D. Reintsema, J. Beyer, S.W. Nam, S. Deiker, G.C. Hilton, K.D. Irwin, J. Martinis, J.N. Ullom, L.R. Vale, Rev. Sci. Instrum. 74, 4500 (2003). https://doi.org/10.1063/1.1605259

    Article  ADS  Google Scholar 

  11. S. Yamada et al., J. Low Temp. Phys., this Special Issue LTD18 (2020)

  12. R. Hayakawa et al., J. Low Temp. Phys., this Special Issue LTD18 (2020)

  13. H. Tatsuno et al., J. Low Temp. Phys., this Special Issue LTD18 (2020)

  14. T. Hashimoto et al., J. Low Temp. Phys., this Special Issue LTD18 (2020)

  15. G. Yoshida, K. Ninomiya, T.U. Ito, W. Higemoto, T. Nagatomo, P. Strasser, N. Kawamura, K. Shimomura, Y. Miyake, T. Miura, K.M. Kubo, A. Shinohara, J. Radioanal. Nucl. Chem. 303, 1277 (2015)

    Article  Google Scholar 

  16. S. Okada et al., J. Low Temp. Phys., this Special Issue LTD18 (2020)

  17. K. Terada et al., Sci. Rep. 7, 15478 (2017). https://www.nature.com/articles/s41598-017-15719-5

    Article  ADS  Google Scholar 

  18. Y. Nakano et al., Rev. Sci. Instrum. 88, 033110 (2017)

    Article  ADS  Google Scholar 

  19. Y. Nakano, R. Igosawa, S. Iida, S. Okada, M. Lindly, S. Menk, R. Nagaoka,T. Hashimoto, S. Yamada, T. Yamaguchi, S. Kuma, T. Azuma, in JPS Conference Proceedings (2018)

  20. M. Wada et al., Nucl. Instrum. Methods Phys. Res. B204, 570–581 (2003)

    Article  ADS  Google Scholar 

  21. Y. Yano, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 261(1–2), 1009–1013 (2007)

    Article  ADS  Google Scholar 

  22. M. Tanabashi, Particle Data Group et al., Phys. Rev. D 98, 030001 (2018)

    Article  ADS  Google Scholar 

  23. SIDDHARTA Collaboration, M. Bazzi et al., Phys. Lett. B 704, 113 (2011)

    Article  ADS  Google Scholar 

  24. Y. Ishisaki et al., Proc. SPIE 9905, 99053T (2016)

  25. Y. Takei et al., Proc. SPIE 9905, 99050X (2016)

    Article  Google Scholar 

  26. Y. Ichinohe, S. Yamada, MNRAS 487, 2 (2019)

    Article  Google Scholar 

  27. T. Brand, J. Wilms, T. Dauser, P. Peille et al., Observing the WHIM with Athena, in Proceedings on SPIE 9905, these proceedings (2016)

  28. A. G. Jessica et al., SPIE 10397, UV (2017)

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Nos. 16H02190, 15H05438, 18H03714, and 18H05458. We appreciate the significant contribution made by NIST, J-PARC, RIKEN, HEATES Project, ASTRO-H/XRISM/DIOS Project, JASRI, and SPring-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yamada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, S., Tatsuno, H., Okada, S. et al. Coevolution of the Technology on Transition-Edge-Sensor Spectrometer and Its Application to Fundamental Science. J Low Temp Phys 200, 418–427 (2020). https://doi.org/10.1007/s10909-020-02441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02441-2

Keywords

Navigation