Skip to main content
Log in

BRIGHT: the three-dimensional X-ray crystal Bragg diffraction code

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In pursuit of a fully coherent X-ray free-electron laser (FEL), highly reflective Bragg crystals are used and will be used as a highly selective spectral filter in hard X-ray self-seeding FELs and X-ray FEL oscillators (XFELO), respectively. However, currently, when simulating self-seeding and XFELO, the three-dimensional effect of Bragg diffraction is not fully considered. In this paper, we derive a comprehensive solution for the response function of the crystal in Bragg diffraction. A three-dimensional X-ray crystal Bragg diffraction code, named BRIGHT, is introduced, which can be combined with other FEL-related codes, e.g., GENESIS and OPC. Performance and feasibility are assessed using two numerical examples, namely a self-seeding experiment for the linac coherent light source and XFELO options for Shanghai high repetition rate XFEL. The results indicate that BRIGHT provides a new and useful tool for three-dimensional modeling of FEL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Bostedt, S. Boutet, D.M. Fritz et al., Linac coherent light source: the first five years. Rev. Mod. Phys. 88, 015007 (2016). https://doi.org/10.1103/RevModPhys.88.015007

    Article  Google Scholar 

  2. D.A. Deacon, L. Elias, J.M. Madey et al., First operation of a free-electron laser. Phys. Rev. Lett. 38, 892 (1977). https://doi.org/10.1103/PhysRevLett.38.892

    Article  Google Scholar 

  3. W. Barletta, J. Bisognano, J. Corlett et al., Free electron lasers: present status and future challenges. Nucl. Instrum. Methods Phys. Res. Sect. A 618, 69–96 (2010). https://doi.org/10.1016/J.NIMA.2010.02.274

    Article  Google Scholar 

  4. P. Emma, R. Akre, J. Arthur et al., First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010). https://doi.org/10.1063/1.5037180

    Article  Google Scholar 

  5. T. Ishikawa, H. Aoyagi, T. Asaka et al., A compact x-ray free-electron laser emitting in the sub-ångström region. Nat. Photonics 6, 540 (2012). https://doi.org/10.1038/nphoton.2012.141

    Article  Google Scholar 

  6. H.S. Kang, C.K. Min, H. Heo et al., Hard x-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photonics 11, 708 (2017). https://doi.org/10.1038/s41566-017-0029-8

    Article  Google Scholar 

  7. C.J. Milne, T. Schietinger, M. Aiba, Swissfel: the swiss x-ray free electron laser. Appl. Sci. 7, 720 (2017). https://doi.org/10.3390/app7070720

    Article  Google Scholar 

  8. M. Altarelli, R. Brinkmann, M. Chergui et al., The European x-ray free-electron laser. Tech. Des. Rep. DESY 97, 1–26 (2006). https://doi.org/10.1080/08940880601064968

    Article  Google Scholar 

  9. R. Bonifacio, C. Pellegrini, L. Narducci, Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984). https://doi.org/10.1016/0030-4018(84)90105-6

    Article  Google Scholar 

  10. G. Geloni, V. Kocharyan, E. Saldin, A novel self-seeding scheme for hard x-ray fels. J. Mod. Opt. 58, 1391–1403 (2011). https://doi.org/10.1080/09500340.2011.586473

    Article  Google Scholar 

  11. J. Amann, W. Berg, V. Blank et al., Demonstration of self-seeding in a hard-x-ray free-electron laser. Nat. Photonics 6, 693–698 (2012). https://doi.org/10.1038/nphoton.2012.180

    Article  Google Scholar 

  12. C. Feng, H.X. Deng, Review of fully coherent free-electron lasers. Nucl. Sci. Tech. 29, 160 (2018). https://doi.org/10.1007/s41365-018-0490-1

    Article  Google Scholar 

  13. K.J. Kim, Y. Shvyd’ko, S. Reiche, A proposal for an x-ray free-electron laser oscillator with an energy-recovery linac. Phys. Rev. Lett. 100, 244802 (2008). https://doi.org/10.1103/PhysRevLett.100.244802

    Article  Google Scholar 

  14. J. Dai, H.X. Deng, Z. Dai, Proposal for an x-ray free electron laser oscillator with intermediate energy electron beam. Phys. Rev. Lett. 108, 034802 (2012). https://doi.org/10.1103/PhysRevLett.108.034802

    Article  Google Scholar 

  15. M. Billardon, P. Elleaume, J. Ortega et al., First operation of a storage-ring free-electron laser. Phys. Rev. Lett. 51, 1652 (1983). https://doi.org/10.1103/PhysRevLett.51.1652

    Article  Google Scholar 

  16. J. Yan, H. Hao, J. Li et al., Storage ring two-color free-electron laser. Phys. Rev. ST Accel. Beams 19, 070701 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.070701

    Article  Google Scholar 

  17. D. Oepts, A. Van der Meer, P. Van Amersfoort, The free-electron-laser user facility felix. Infrared Phys. Technol. 36, 297–308 (1995). https://doi.org/10.1016/1350-4495(94)00074-U

    Article  Google Scholar 

  18. Y.V. Shvyd’ko, M. Lerche, H.C. Wille et al., X-ray interferometry with microelectronvolt resolution. Phys. Rev. Lett. 90, 013904 (2003). https://doi.org/10.1103/PhysRevLett.90.013904

    Article  Google Scholar 

  19. Y.V. Shvyd’ko, S. Stoupin, A. Cunsolo et al., High-reflectivity high-resolution x-ray crystal optics with diamonds. Nat. Phys. 6, 196–199 (2010). https://doi.org/10.1038/nphys1506

    Article  Google Scholar 

  20. Y. Shvyd’ko, in Proceedings of the International Committee for Future Accelerators, Feasibility of x-ray cavities for free electron laser oscillators, p. 68 (2013)

  21. T. Kolodziej, P. Vodnala, S. Terentyev et al., Diamond drumhead crystals for x-ray optics applications. J. Appl. Crystallogr. 49, 1240–1244 (2016). https://doi.org/10.1107/S1600576716009171

    Article  Google Scholar 

  22. M. Song, Q. Zhang, Y. Guo et al., Numerical modeling of thermal loading of diamond crystal in x-ray fel oscillators. Chin. Phys. C 40, 048101 (2016). https://doi.org/10.1088/1674-1137/40/4/048101

    Article  Google Scholar 

  23. K. Li, M. Song, H.H. Deng, Simplified model for fast optimization of a free-electron laser oscillator. Rev. ST Accel. Beams 20, 030702 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.030702

    Article  Google Scholar 

  24. K. Li, H.X. Deng, Gain-guided x-ray free-electron laser oscillator. Appl. Phys. Lett. 113, 061106 (2018). https://doi.org/10.1063/1.5037180

    Article  Google Scholar 

  25. R. Lindberg, K.J. Kim, Y. Shvyd’ko et al., Performance of the x-ray free-electron laser oscillator with crystal cavity. Phys. Rev. ST Accel. Beams 14, 010701 (2011). https://doi.org/10.1103/PhysRevSTAB.14.010701

    Article  Google Scholar 

  26. X. Yang, Y. Shvyd’ko, Maximizing spectral flux from self-seeding hard x-ray free electron lasers. Phys. Rev. ST Accel. Beams 16, 120701 (2013). https://doi.org/10.1103/PhysRevSTAB.16.120701

    Article  Google Scholar 

  27. Y. Shvyd’ko, R. Lindberg, Spatiotemporal response of crystals in x-ray bragg diffraction. Phys. Rev. ST Accel. Beams 15, 100702 (2012). https://doi.org/10.1103/PhysRevSTAB.15.100702

    Article  Google Scholar 

  28. Y. Shvyd’Ko, X-ray Optics: High-Energy-Resolution Applications, vol. 98 (Springer, Berlin, 2013). https://doi.org/10.1007/978-3-540-40890-1

    Book  Google Scholar 

  29. B.W. Batterman, H. Cole, Dynamical diffraction of x rays by perfect crystals. Rev. Mod. Phys. 36, 681 (1964). https://doi.org/10.1103/RevModPhys.36.681

    Article  MathSciNet  Google Scholar 

  30. A. Authier, International Tables for Crystallography Volume B: Reciprocal Space, Dynamical Theory of X-ray Diffraction (Springer, Berlin, 2006), pp. 534–551. https://doi.org/10.1107/97809553602060000569

    Book  Google Scholar 

  31. K. Li, H.X. Deng, Systematic design and three-dimensional simulation of x-ray fel oscillator for shanghai coherent light facility. Nucl. Instrum. Methods Phys. Res. Sect. A 895, 40–47 (2018). https://doi.org/10.1016/J.NIMA.2018.03.072

    Article  Google Scholar 

  32. NumPy. http://www.numpy.org/

  33. Z. Zhu, Z. Zhao, D. Wang, et al., Sclf: An 8-gev cw scrf linac-based x-ray fel facility in shanghai, in Proceedings of the FEL2017, Santa Fe, NM, USA, pp. 20–25 (2017). https://doi.org/10.18429/JACoW-FEL2017-MOP055

  34. Z.T. Zhao, C. Feng, K.Q. Zhang, Two-stage eehg for coherent hard x-ray generation based on a superconducting linac. Nucl. Sci. Tech. 28, 117 (2017). https://doi.org/10.1007/s41365-017-0258-z

    Article  Google Scholar 

  35. Z. Wang, C. Feng, Q. Gu et al., Generation of double pulses at the shanghai soft x-ray free electron laser facility. Nucl. Sci. Tech. 28, 28 (2017). https://doi.org/10.1007/s41365-017-0188-9

    Article  Google Scholar 

  36. Y. Chao, C. Jianhui, W. Dong et al., Research on probing the transverse coherence of the self- amplified spontaneous emission of a free-electron laser using near-field heterodyne speckle. Nucl. Tech. 41, 1–7 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.100101 (in Chinese)

    Article  Google Scholar 

  37. B. Yu, Z. Wenyan, L. Bo et al., Measurement study of electron bunch length based on the coherent transition radiation. Nucl. Tech. 40, 6–11 (2017). https://doi.org/10.11889/j.0253-3219.2017.hjs.40.010102 (in Chinese)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Xiao Deng.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11775293), the National Key Research and Development Program of China (No. 2016YFA0401900), the Young Elite Scientist Sponsorship Program by CAST (No. 2015QNRC001) and Ten Thousand Talent Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, NS., Li, K. & Deng, HX. BRIGHT: the three-dimensional X-ray crystal Bragg diffraction code. NUCL SCI TECH 30, 39 (2019). https://doi.org/10.1007/s41365-019-0559-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0559-5

Keywords

Navigation