Skip to main content
Log in

Influence of coalescence parameters on the production of protons and Helium-3 fragments

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The time evolution of protons and 3He fragments from Au+Au/Pb+Pb reactions at 0.25, 2, and 20 GeV/nucleon is investigated with the potential version of the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) model combined with the traditional coalescence afterburner. In the coalescence process, the relative distance R 0 and relative momentum P 0 are surveyed in the range of 3-4 fm and 0.25-0.35 GeV/c, respectively. For both clusters, a strong reversed correlation between R 0 and P 0 is seen and it is time-dependent as well. For protons, the accepted (R 0, P 0) bands lie in the time interval 30-60 fm/c, while for 3He, a longer time evolution (at about 60-90 fm/c) is needed. Otherwise, much smaller R 0 and P 0 values should be chosen. If we further look at the rapidity distributions from both central and semi-central collisions, it is found that the accepted [t cut, (R 0, P 0)] assemble can provide consistent results for proton yield and collective flows especially at mid-rapdities, while for 3He, the consistency is destroyed at both middle and projectile-target rapidities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Bass, et al. (UrQMD-Collaboration), Prog. Part. Nucl. Phys. 41, 255 (1998).

    Article  ADS  Google Scholar 

  2. M. Bleicher, et al. (UrQMD-Collaboration), J. Phys. G-Nucl. Part. Phys. 25, 1859 (1999).

    Article  ADS  Google Scholar 

  3. J. P. Bondorf, R. Donangelo, I. N. Mishustin, C. J. Pethick, H. Schulz, and K. Sneppen, Nucl. Phys. A 443, 321 (1985).

    Article  ADS  Google Scholar 

  4. J. P. Bondorf, A. S. Botvina, A. S. Ilinov, I. N. Mishustin, and K. Sneppen, Phys. Rep. 257, 133 (1995).

    Article  ADS  Google Scholar 

  5. W. Reisdorf, Z. Phys. A 300, 227 (1981).

    Article  ADS  Google Scholar 

  6. W. Reisdorf, F. P. Hessberger, K. D. Hildenbrand, S. Hofmann, and G. Münzenberg, Nucl. Phys. A 438, 212 (1985).

    Article  ADS  Google Scholar 

  7. R. J. Charity, M. A. McMahan, G. J. Wozniak, R. J. McDonald, L. G. Moretto, D. G. Sarantites, L. G. Sobotka, G. Guarino, A. Pantaleo, L. Fiore, A. Gobbi, and K. D. Hildenbrand, Nucl. Phys. A 483, 371 (1988).

    Article  ADS  Google Scholar 

  8. H. Kruse, B. V. Jacak, J. J. Molitoris, G. D. Westfall, and H. Stoecker, Phys. Rev. C 31, 1770 (1985).

    Article  ADS  Google Scholar 

  9. P. B. Gossiaux, R. Puri, C. Hartnack, and J. Aichelin, Nucl. Phys. A 619, 379 (1997).

    Article  ADS  Google Scholar 

  10. R. Mattiello, A. Jahns, H. Sorge, H. Stoecker, and W. Greiner, Phys. Rev. Lett. 74, 2180 (1995).

    Article  ADS  Google Scholar 

  11. J. L. Nagle, B. S. Kumar, D. Kusnezov, H. Sorge, and R. Mattiello, Phys. Rev. C 53, 367 (1996).

    Article  ADS  Google Scholar 

  12. B. Monreal, S. A. Bass, M. Bleicher, S. Esumi, W. Greiner, Q. Li, H. Liu, W. J. Llope, R. Mattiello, S. Panitkin, I. Sakrejda, R. Snellings, H. Sorge, C. Spieles, H. Stöcker, J. Thomas, S. Voloshin, F. Wang, and N. Xu, Phys. Rev. C 60, 031901 (1999).

    Article  ADS  Google Scholar 

  13. T. Gaitanos, H. Lenske, and U. Mosel, Phys. Lett. B 675, 297 (2009).

    Article  ADS  Google Scholar 

  14. Y. Watanabe, and D. N. Kadrev, Int. Conf. Nucl. Data Sci. Technol. ND 2007, 295 (2007).

    Google Scholar 

  15. D. Wei, N. Wang, and L. Ou, J. Phys. G 41, 035104 (2014).

    Article  ADS  Google Scholar 

  16. Q. F. Li, Y. J. Wang, X. B. Wang, and C. W. Shen, Sci. China-Phys. Mech. Astron. 59(2), 622001 (2016).

    Article  Google Scholar 

  17. Q. F. Li, Y. J. Wang, X. B. Wang, and C. W. Shen, Sci. China-Phys. Mech. Astron. 59(3), 632002 (2016).

    Article  Google Scholar 

  18. E. L. Bratkovskaya, et al. (Nucleus Collisions), Phys. Rev. C 69, 054907 (2004).

    Article  ADS  Google Scholar 

  19. Q. F. Li, Y. J. Wang, X. B. Wang, and C. W. Shen, Sci. China-Phys. Mech. Astron. 59(3), 632001 (2016).

    Article  Google Scholar 

  20. Q. Li, C. Shen, C. Guo, Y. Wang, Z. Li, J. Lukasik, and W. Trautmann, Phys. Rev. C 83, 044617 (2011).

    Article  ADS  Google Scholar 

  21. C. Guo, Y. Wang, Q. Li, W. Trautmann, L. Liu, and L. Wu, Sci. China-Phys. Mech. Astron. 55, 252 (2012).

    Article  ADS  Google Scholar 

  22. Y. Wang, C. Guo, Q. Li, and H. Zhang, Sci. China-Phys. Mech. Astron. 55, 2407 (2012).

    Article  ADS  Google Scholar 

  23. Y. Wang, C. Guo, Q. Li, H. Zhang, Z. Li, and W. Trautmann, Phys. Rev. C 89, 034606 (2014).

    Article  ADS  Google Scholar 

  24. Y. Wang, C. Guo, Q. Li, and H. Zhang, Eur. Phys. J. A 51, 37 (2015).

    Article  ADS  Google Scholar 

  25. Q. Li, G. Graf, and M. Bleicher, Phys. Rev. C 85, 034908 (2012).

    Article  ADS  Google Scholar 

  26. G. Graef, Q. Li, and M. Bleicher, J. Phys. G 39, 065101 (2012).

    Article  ADS  Google Scholar 

  27. G. Graef, M. Bleicher, and Q. Li, Phys. Rev. C 85, 044901 (2012).

    Article  ADS  Google Scholar 

  28. Q. Li, M. Bleicher, and H. Stocker, Phys. Lett. B 659, 525 (2008).

    Article  ADS  Google Scholar 

  29. P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298, 1592 (2002).

    Article  ADS  Google Scholar 

  30. M. Dutra, O. Lourenco, J. S. Sa Martins, A. Delfino, J. R. Stone, and P. D. Stevenson, Phys. Rev. C 85, 035201 (2012).

    Article  ADS  Google Scholar 

  31. Z. Xiao, B. A. Li, L. W. Chen, G. C. Yong, and M. Zhang, Phys. Rev. Lett. 102, 062502 (2009).

    Article  ADS  Google Scholar 

  32. Z. Q. Feng, and G. M. Jin, Phys. Lett. B 683, 140 (2010).

    Article  ADS  Google Scholar 

  33. P. Russotto, P. Z. Wu, M. Novak, M. Chartier, Y. Leifels, and R. C. Lemmon, Phys. Lett. B 697, 471 (2011).

    Article  ADS  Google Scholar 

  34. W. Reisdorf, et al. (FOPI Collaboration), Nucl. Phys. A 848, 366 (2010).

    Article  ADS  Google Scholar 

  35. J. L. Klay, et al. (E895 Collaboration), Phys. Rev. Lett. 88, 102301 (2002).

    Article  ADS  Google Scholar 

  36. C. Blume, et al. (NA49 Collaboration), J. Phys. G 34, S951 (2007).

    Article  ADS  Google Scholar 

  37. H. Strobele, et al. (NA49 Collaboration), PoS CPOD 2009, 044 (2009).

    Google Scholar 

  38. S. Goyal, and R. K. Puri, Phys. Rev. C 83, 047601 (2011).

    Article  ADS  Google Scholar 

  39. S. Kumar, and Y. G. Ma, Phys. Rev. C 91(3), 034612 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingFeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, Y., Wang, X. et al. Influence of coalescence parameters on the production of protons and Helium-3 fragments. Sci. China Phys. Mech. Astron. 59, 672013 (2016). https://doi.org/10.1007/s11433-016-0120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-0120-3

Keywords

Navigation