Skip to main content
Log in

Sorption of Th(IV) on goethite: effects of pH, ionic strength, FA and phosphate

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Sorption of thorium (IV) on goethite was investigated as a function of contact time, pH, ionic strength, anions, solid-to-liquid ratio (m/V) and Th(IV) concentration using batch technique. The results showed that the sorption of Th(IV) was strong pH-dependence, and increased from ~10 to ~100% over the pH range of 2.0–4.0, and then kept a constant level in the higher pH range. The sorption of Th(IV) increased with increasing m/V and independent of ionic strength. It was clear that phosphate and FA significantly enhanced Th(IV) sorption on goethite. The sorption and desorption isotherms were investigated at pH 2.90 ± 0.05 and analyzed with Freundlich and Langmuir models, respectively. Compared to Langmuir model, Freundlich model could fit the experimental data better, according to the high relative coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sarrin SR (1961) Talanta 8:673

    Article  Google Scholar 

  2. Qadeer R, Hanif J, Hanif I (1995) J Radioanal Nucl Chem 190:103

    Article  CAS  Google Scholar 

  3. Kilincarslan Kaygun A, Akyil S (2007) J Hazard Mater 147:357

    Article  Google Scholar 

  4. Östhols E (1995) Geochim Cosmochim Ac 59:1235

    Article  Google Scholar 

  5. Li WJ, Tao ZY (2002) J Radioanal Nucl Chem 254:187

    Article  CAS  Google Scholar 

  6. Guo ZJ, Yu XM, Guo FH, Tao ZY (2005) J Coll Interf Sci 288:14

    Article  CAS  Google Scholar 

  7. Guo ZJ, Niu LJ, Tao ZY (2005) J Radioanal Nul Chem 266:333

    Article  CAS  Google Scholar 

  8. Zhang HX, Tao ZY (2002) J Radioanal Nul Chem 254:103

    Article  CAS  Google Scholar 

  9. Zhang HX, Dong Z, Tao ZY (2006) Colloids Surf A 278:46

    Article  CAS  Google Scholar 

  10. Guo ZJ, Yan ZY, Tao ZY (2004) J Radioanal Nul Chem 261:157

    Article  CAS  Google Scholar 

  11. Chu TW, Du JZ, Lu JR (2006) J Radioanal Nul Chem 210:197

    Google Scholar 

  12. Tan XL, Wang XK, Fang M, Chen CL (2007) Colloids Surf A 296:109

    Article  CAS  Google Scholar 

  13. Zhang HX, Yuan JQ, Tao ZY (2007) J Radioanal Nucl Chem 273:465

    Article  CAS  Google Scholar 

  14. Chang P, Yu S, Chen T, Ren A, Chen C, Wang X (2007) J Radioanal Nucl Chem 274:153

    Article  CAS  Google Scholar 

  15. Qian LJ, Zhao JN, Hu PZ, Geng YX, Wu WS (2010) J Radioanal Nucl Chem 283:653

    Article  CAS  Google Scholar 

  16. Guo ZJ, Li Y, Wu WS (2009) Appl Radiat Isotopes 67:996

    Article  CAS  Google Scholar 

  17. Nielsen UG, Paik Y, Julmis K, Schoonen MA, Reeder RJ, Grey CP (2005) J Phys Chem B 109:18310

    Article  CAS  Google Scholar 

  18. Hu BW, Cheng W, Zhang H, Sheng GD (2010) J Radioananl Nucl Chem 285:389

    Article  CAS  Google Scholar 

  19. Forbes EA, Posner AM, Quirk JP (1976) J Soil Sci 27:154

    Article  CAS  Google Scholar 

  20. Ankomah AB (1992) Soil Sci 154:206

    Article  CAS  Google Scholar 

  21. Parthak PN, Choppin GR (2007) J Radioananl Nucl Chem 274:517

    Article  Google Scholar 

  22. Hunter KA, Hawke DJ, Choo LK (1988) Geochim Cosmochim Ac 52:627

    Article  CAS  Google Scholar 

  23. Villalobos M, Gallegos AP (2008) J Coll Interf Sci 326:307

    Article  CAS  Google Scholar 

  24. Atkinson RJ, Posner AM, Quirk JP (1968) J Inorg Nucl Chem 30:2371

    Article  CAS  Google Scholar 

  25. Tao ZY, Yang YH, Sheng FL (1995) Toxicol Environ Chem 49:45

    Article  CAS  Google Scholar 

  26. Boily JF, Lutzenkirchen J, Balmes O, Beattie J, Sjoberg S (2001) Colloids Surf A 179:11

    Article  CAS  Google Scholar 

  27. Luengo C, Brigante M, Avena M (2007) J Colloid Interface Sci 311:354

    Article  CAS  Google Scholar 

  28. Das DK, Parthak PN, Kumar S, Manchanda VK (2009) J Radioanal Nucl Chem 281:449

    Article  CAS  Google Scholar 

  29. Anderson MA, Tejedor MI, Stanforth RR (1985) Environ Sci Technol 19:632

    Article  CAS  Google Scholar 

  30. Guerraa DL, Vianab RR, Airoldi C (2009) J Hazard Mater 168:1504

    Article  Google Scholar 

  31. Guo ZJ, Su HY, Wu WS (2009) Radiochim Acta 97:133

    Article  CAS  Google Scholar 

  32. Guo ZJ, Yan C, Xu J, Wu WS (2009) Colloids Surf A 336:123

    Article  CAS  Google Scholar 

  33. Sharma P, Singh G, Tomar R (2009) J Colloid Interf Sci 332:298

    Article  CAS  Google Scholar 

  34. Sharma P, Tomar R (2008) Micropor Mesopor Mater 116:641

    Article  CAS  Google Scholar 

  35. Cromieres E, Moulin V, Fourest B, Guillaumont R, Giffaut E (1998) Radiochim Acta 82:249

    CAS  Google Scholar 

  36. Jakobsson AM (1999) J Colloid Interf Sci 220:367

    Article  CAS  Google Scholar 

  37. Zhao DL, Feng SJ, Chen CL, Chen SH, Xu D, Wang XK (2008) Appl Clay Sci 41:17

    Article  CAS  Google Scholar 

  38. Lu SS, Guo ZQ, Zhang CC, Zhang SW (2011) J Radioanal Nucl Chem 287:621

    Article  CAS  Google Scholar 

  39. Jie XL, Liu F, Li XY (1995) Pedosphere 5:229

    CAS  Google Scholar 

  40. Li L, Stanforth R (2000) J Colloid Interf Sci 230:12

    Article  CAS  Google Scholar 

  41. Bostick BC, Fendorf S, Barnett MO, Jardine PM, Brooks SC (2002) Soil Sci Soc Am J 66:99

    Article  CAS  Google Scholar 

  42. Tao H, Marko B, Erice R, Zhuang JL (2004) Environ Sci Technol 38:6059

    Article  Google Scholar 

  43. Dean JA (1995) Analytical chemistry handbook. Beijing World Publishing Corporation/MC-Hill Book Co, Beijing

    Google Scholar 

  44. Talip Z, Eral M, Hicsonmez U (2009) J Environ Radioact 100:139

    Article  CAS  Google Scholar 

  45. Chen CL, Li XL, Zhao DL, Tan XL, Wang XK (2007) Colloids Surf A 302:449

    Article  CAS  Google Scholar 

  46. Reiller P, Casanova F, Moulin V (2005) Environ Sci Technol 39:1641

    Article  CAS  Google Scholar 

  47. Reiller P, Moulin V, Casanova F, Dautel C (2002) Appl Geochem 17:1551

    Article  CAS  Google Scholar 

  48. Chen CL, Wang XK (2007) Appl Geochem 22:436

    Article  CAS  Google Scholar 

  49. Sheng GD, Hu J, Wang XK (2008) Appl Radiat Isot 66:1313

    Article  CAS  Google Scholar 

  50. Guo ZQ, Xu DP, Zhao DL, Zhang SW, Xu JZ (2011) J Radioanal Nucl Chem 287:505

    Article  CAS  Google Scholar 

  51. Hu J, Xu D, Chen L, Wang XK (2009) J Radioanal Nucl Chem 279:701

    Article  CAS  Google Scholar 

  52. Yu S, Ren A, Cheng J, Song XP, Chen C, Wang X (2007) J Radioanal Nucl Chem 273:129

    Article  CAS  Google Scholar 

  53. Backstrom M, Dario M, Karlsson S, Allard B (2003) Sci Total Environ 304:257

    Article  CAS  Google Scholar 

  54. Tao ZY, Chu TW, Du JZ, Dai XX, Gu YJ (2000) Appl Geochem 15:133

    Article  Google Scholar 

  55. Wang XK, Rabung T, Geckeis H, Panak PJ, Klenze R, Fanghaenel T (2004) Radiochim Acta 92:691

    Article  CAS  Google Scholar 

  56. Xu D, Shao DD, Chen CL, Ren AP, Wang XK (2006) Radiochim Acta 94:97

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support by the National Natural Science Foundation of China (Nos. 20501010 and J0630962) is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Wangsuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, L., Qiaohui, F. & Wangsuo, W. Sorption of Th(IV) on goethite: effects of pH, ionic strength, FA and phosphate. J Radioanal Nucl Chem 289, 865–871 (2011). https://doi.org/10.1007/s10967-011-1166-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1166-z

Keywords

Navigation