Skip to main content
Log in

Chiral phase transition of quark matter in the background of parallel electric and magnetic fields

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

We report on our results about spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field, \({{\varvec{E}}}\), and magnetic field, \({{\varvec{B}}}\). A Nambu–Jona–Lasinio model is used to compute the dependence of the chiral condensate at finite temperature, E and B. We study the effect of this background on inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We also consider the effect of equilibration of chiral density, \(n_5\), produced by axial anomaly on the critical temperature. The equilibration of \(n_5\) allows for the introduction of the chiral chemical potential, \(\mu _5\), which is computed self-consistently as a function of temperature and field strength. We find that even if the chiral medium is produced by the fields the thermodynamics, with particular reference to the inverse catalysis induced by the external fields, it is not very affected by \(n_5\) at least if the average \(\mu _5\), at equilibrium is not too large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.L. Adler, Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426 (1969). doi:10.1103/PhysRev.177.2426

    Article  Google Scholar 

  2. J.S. Bell, R. Jackiw, A PCAC puzzle: \(\pi ^0\) \(\rightarrow \) \(\gamma \gamma \) in the sigma model. Nuovo Cim. A 60, 47 (1969). doi:10.1007/BF02823296

    Article  Google Scholar 

  3. G. D. Moore, Do we understand the sphaleron rate? arXiv:hep-ph/0009161

  4. G.D. Moore, M. Tassler, The sphaleron rate in SU(N) gauge theory. JHEP 1102, 105 (2011). doi:10.1007/JHEP02

    Article  MATH  Google Scholar 

  5. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, The effects of topological charge change in heavy ion collisions: ’Event by event P and CP violation’. Nucl. Phys. A 803, 227 (2008). doi:10.1016/j.nuclphysa.2008.02.298

    Article  Google Scholar 

  6. K. Fukushima, D.E. Kharzeev, H.J. Warringa, The chiral magnetic effect. Phys. Rev. D 78, 074033 (2008). doi:10.1103/PhysRevD.78.074033

    Article  Google Scholar 

  7. D.T. Son, P. Surowka, Hydrodynamics with triangle anomalies. Phys. Rev. Lett. 103, 191601 (2009). doi:10.1103/PhysRevLett.103.191601

    Article  MathSciNet  Google Scholar 

  8. N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam, P. Surowka, Hydrodynamics from charged black branes. JHEP 1101, 094 (2011). doi:10.1007/JHEP01

    Article  MATH  Google Scholar 

  9. K. Landsteiner, E. Megias, F. Pena-Benitez, Gravitational anomaly and transport. Phys. Rev. Lett. 107, 021601 (2011). doi:10.1103/PhysRevLett.107.021601

    Article  MATH  Google Scholar 

  10. D.T. Son, A.R. Zhitnitsky, Quantum anomalies in dense matter. Phys. Rev. D 70, 074018 (2004). doi:10.1103/PhysRevD.70.074018

    Article  Google Scholar 

  11. M.A. Metlitski, A.R. Zhitnitsky, Anomalous axion interactions and topological currents in dense matter. Phys. Rev. D 72, 045011 (2005). doi:10.1103/PhysRevD.72.045011

    Article  Google Scholar 

  12. D.E. Kharzeev, H.U. Yee, Chiral magnetic wave. Phys. Rev. D 83, 085007 (2011). doi:10.1103/PhysRevD.83.085007

    Article  Google Scholar 

  13. M.N. Chernodub, Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media. JHEP 1601, 100 (2016). doi:10.1007/JHEP01

    Article  MathSciNet  Google Scholar 

  14. M.N. Chernodub, M. Zubkov, Intrinsic chiral magnetic effect in Dirac semimetals due to dislocations. arXiv:1508.03114 [cond-mat.mes-hall]

  15. M.N. Chernodub, A. Cortijo, A.G. Grushin, K. Landsteiner, M.A.H. Vozmediano, Condensed matter realization of the axial magnetic effect. Phys. Rev. B 89(8), 081407 (2014). doi:10.1103/PhysRevB.89.081407

    Article  Google Scholar 

  16. V. Braguta, M.N. Chernodub, K. Landsteiner, M.I. Polikarpov, M.V. Ulybyshev, Numerical evidence of the axial magnetic effect. Phys. Rev. D 88, 071501 (2013). doi:10.1103/PhysRevD.88.071501

    Article  Google Scholar 

  17. A.V. Sadofyev, M.V. Isachenkov, The chiral magnetic effect in hydrodynamical approach. Phys. Lett. B 697, 404 (2011). doi:10.1016/j.physletb.2011.02.041

    Article  Google Scholar 

  18. A.V. Sadofyev, V.I. Shevchenko, V.I. Zakharov, Notes on chiral hydrodynamics within effective theory approach. Phys. Rev. D 83, 105025 (2011). doi:10.1103/PhysRevD.83.105025

    Article  Google Scholar 

  19. Z.V. Khaidukov, V.P. Kirilin, A.V. Sadofyev, V. I. Zakharov, On magnetostatics of chiral media. arXiv:1307.0138 [hep-th]

  20. V.P. Kirilin, A.V. Sadofyev, V.I. Zakharov, Anomaly and long-range forces. doi:10.1142/9789814616850_0014. arXiv:1312.0895 [hep-ph]

  21. A. Avdoshkin, V.P. Kirilin, A.V. Sadofyev, V.I. Zakharov, On consistency of hydrodynamic approximation for chiral media. Phys. Lett. B 755, 1 (2016). doi:10.1016/j.physletb.2016.01.048

    Article  MathSciNet  Google Scholar 

  22. M. Ruggieri, G.X. Peng, Critical temperature of chiral symmetry restoration for quark matter with a chiral chemical potential. arXiv:1602.03651 [hep-ph]

  23. M. Ruggieri, G.X. Peng, Chiral symmetry restoration with a chiral chemical potential: the role of momentum dependent quark self-energy. arXiv:1602.05250 [hep-ph]

  24. R. Gatto, M. Ruggieri, Hot quark matter with a chiral chemical potential. Phys. Rev. D 85, 054013 (2012). doi:10.1103/PhysRevD.85.054013

    Article  Google Scholar 

  25. K. Fukushima, M. Ruggieri, R. Gatto, Chiral magnetic effect in the PNJL model. Phys. Rev. D 81, 114031 (2010). doi:10.1103/PhysRevD.81.114031

    Article  Google Scholar 

  26. M.N. Chernodub, A.S. Nedelin, Phase diagram of chirally imbalanced QCD matter. Phys. Rev. D 83, 105008 (2011). doi:10.1103/PhysRevD.83.105008

    Article  Google Scholar 

  27. M. Ruggieri, The critical end point of quantum chromodynamics detected by chirally imbalanced quark matter. Phys. Rev. D 84, 014011 (2011). doi:10.1103/PhysRevD.84.014011

    Article  Google Scholar 

  28. L. Yu, H. Liu, M. Huang, The effect of the chiral chemical potential on the chiral phase transition in the NJL model with different regularization schemes. arXiv:1511.03073 [hep-ph]

  29. L. Yu, J. Van Doorsselaere, M. Huang, Inverse magnetic catalysis in the three-flavor NJL model with axial-vector interaction. Phys. Rev. D 91(7), 074011 (2015). doi:10.1103/PhysRevD.91.074011

    Article  Google Scholar 

  30. M. Frasca, Nonlocal Nambu–Jona–Lasinio model and chiral chemical potential. arXiv:1602.04654 [hep-ph]

  31. V.V. Braguta, E.-M. Ilgenfritz, A.Y. Kotov, B. Petersson, S.A. Skinderev, Study of QCD phase diagram with non-zero chiral chemical potential. arXiv:1512.05873 [hep-lat]

  32. V.V. Braguta, V.A. Goy, E.-M. Ilgenfritz, A.Y. Kotov, A.V. Molochkov, M. Muller-Preussker, B. Petersson, Two-color QCD with non-zero chiral chemical potential. JHEP 1506, 094 (2015). doi:10.1007/JHEP06

    Article  Google Scholar 

  33. V.V. Braguta, A.Y. Kotov, Catalysis of dynamical chiral symmetry breaking by chiral chemical potential. arXiv:1601.04957 [hep-th]

  34. M. Hanada, N. Yamamoto, Universality of phase diagrams in QCD and QCD-like theories. PoS LATTICE 2011, 221 (2011)

    Google Scholar 

  35. S.S. Xu, Z.F. Cui, B. Wang, Y.M. Shi, Y.C. Yang, H.S. Zong, Chiral phase transition with a chiral chemical potential in the framework of Dyson-Schwinger equations. Phys. Rev. D 91(5), 056003 (2015). doi:10.1103/PhysRevD.91.056003

    Article  Google Scholar 

  36. M. Ruggieri, G.X. Peng, Quark matter in a parallel electric and magnetic field background: chiral phase transition and equilibration of chiral density. Phys. Rev. D 93(9), 094021 (2016). doi:10.1103/PhysRevD.93.094021

    Article  Google Scholar 

  37. M. Ruggieri, G.X. Peng, M. Chernodub, Chiral relaxation time at the chiral crossover of quantum chromodynamics. arXiv:1606.03287 [hep-ph]

  38. R.L.S. Farias, D.C. Duarte, G. Krein, R.O. Ramos, Quark matter with a chiral imbalance in the Nambu–Jona–Lasinio model. arXiv:1604.04518 [hep-ph]

  39. Z.F. Cui, I.C. Cloet, Y. Lu, C.D. Roberts, S.M. Schmidt, S.S. Xu, H.S. Zong, Critical endpoint in the presence of a chiral chemical potential. arXiv:1604.08454 [nucl-th]

  40. A.A. Andrianov, D. Espriu, X. Planells, An effective QCD Lagrangian in the presence of an axial chemical potential. Eur. Phys. J. C 73(1), 2294 (2013). doi:10.1140/epjc/s10052-013-2294-0

    Article  Google Scholar 

  41. S.S. Afonin, A.A. Andrianov, D. Espriu, The masses of vector mesons in holographic QCD at finite chiral chemical potential. Phys. Lett. B 745, 52 (2015). doi:10.1016/j.physletb.2015.04.027

    Article  MATH  Google Scholar 

  42. D. Ebert, T.G. Khunjua, K.G. Klimenko, V.C. Zhukovsky, Competition and duality correspondence between chiral and superconducting channels in (2+1)-dimensional four-fermion models with fermion number and chiral chemical potentials. Phys. Rev. D 93(10), 105022 (2016). doi:10.1103/PhysRevD.93.105022

    Article  MathSciNet  Google Scholar 

  43. B. Wang, Y.L. Wang, Z.F. Cui, H.S. Zong, Effect of the chiral chemical potential on the position of the critical endpoint. Phys. Rev. D 91(3), 034017 (2015). doi:10.1103/PhysRevD.91.034017

    Article  Google Scholar 

  44. A.Y. Babansky, E.V. Gorbar, G.V. Shchepanyuk, Chiral symmetry breaking in the Nambu–Jona–Lasinio model in external constant electromagnetic field. Phys. Lett. B 419, 272 (1998). doi:10.1016/S0370-2693(97)01445-7

    Article  Google Scholar 

  45. S.P. Klevansky, R.H. Lemmer, Chiral symmetry restoration in the Nambu–Jona–Lasinio model with a constant electromagnetic field. Phys. Rev. D 39, 3478 (1989). doi:10.1103/PhysRevD.39.3478

    Article  Google Scholar 

  46. H. Suganuma, T. Tatsumi, On the behavior of symmetry and phase transitions in a strong electromagnetic field. Annals Phys. 208, 470 (1991). doi:10.1016/0003-4916(91)90304-Q

    Article  Google Scholar 

  47. K.G. Klimenko, Three-dimensional Gross–Neveu model at nonzero temperature and in an external magnetic field. Z. Phys. C 54, 323 (1992). doi:10.1007/BF01566663

    Article  MathSciNet  Google Scholar 

  48. K.G. Klimenko, Three-dimensional Gross–Neveu model at nonzero temperature and in an external magnetic field. Theor. Math. Phys. 90, 1 (1992) [Teor. Mat. Fiz. 90, 3 (1992)]. doi:10.1007/BF01018812

  49. I.V. Krive, S.A. Naftulin, Dynamical symmetry breaking and phase transitions in a three-dimensional Gross–Neveu model in a strong magnetic field”. Phys. Rev. D 46, 2737 (1992). doi:10.1103/PhysRevD.46.2737

    Article  Google Scholar 

  50. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Catalysis of dynamical flavor symmetry breaking by a magnetic field in (2+1)-dimensions. Phys. Rev. Lett. 73, 3499 (1994), Erratum: [Phys. Rev. Lett. 76, 1005 (1996)]. doi:10.1103/PhysRevLett.73.3499

  51. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in (3+1)-dimensions. Phys. Lett. B 349, 477 (1995). doi:10.1016/0370-2693(95)00232-A

    Article  MATH  Google Scholar 

  52. G. Cao, X.G. Huang, Electromagnetic triangle anomaly and neutral pion condensation in QCD vacuum. Phys. Lett. B 757, 1 (2016). doi:10.1016/j.physletb.2016.03.066

    Article  Google Scholar 

  53. M. D’Elia, M. Mariti, F. Negro, Susceptibility of the QCD vacuum to CP-odd electromagnetic background fields. Phys. Rev. Lett 110(8), 082002 (2013). doi:10.1103/PhysRevLett.110.082002

    Article  Google Scholar 

  54. G. Cao, X.G. Huang, Chiral phase transition and Schwinger mechanism in a pure electric field. Phys. Rev. D 93(1), 016007 (2016). doi:10.1103/PhysRevD.93.016007

    Article  Google Scholar 

  55. Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. 1. Phys. Rev. 122, 345 (1961). doi:10.1103/PhysRev.122.345

    Article  Google Scholar 

  56. Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. II. Phys. Rev. 124, 246 (1961). doi:10.1103/PhysRev.124.246

    Article  Google Scholar 

  57. S.P. Klevansky, The Nambu–Jona–Lasinio model of quantum chromodynamics. Rev. Mod. Phys. 64, 649 (1992). doi:10.1103/RevModPhys.64.649

    Article  MathSciNet  Google Scholar 

  58. T. Hatsuda, T. Kunihiro, QCD phenomenology based on a chiral effective Lagrangian. Phys. Rept. 247, 221 (1994). doi:10.1016/0370-1573

    Article  Google Scholar 

  59. J.S. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  60. W. Heisenberg, H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys. 98, 714. See also arXiv:physics/0605038 for an English translation by W. Korolevski, H. Kleinert. (1936). doi:10.1007/BF01343663

  61. H.J. Warringa, Dynamics of the chiral magnetic effect in a weak magnetic field. Phys. Rev. D 86, 085029 (2012). doi:10.1103/PhysRevD.86.085029

    Article  Google Scholar 

Download references

Acknowledgments

M. Ruggieri would like to acknowledge fruitful discussions with M. Chernodub and M. Frasca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ruggieri.

Additional information

This work was supported by the CAS President’s International Fellowship Initiative (No. 2015PM008), and the National Natural Science Foundation of China (Nos. 11135011 and 11575190).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggieri, M., Peng, GX. Chiral phase transition of quark matter in the background of parallel electric and magnetic fields. NUCL SCI TECH 27, 130 (2016). https://doi.org/10.1007/s41365-016-0139-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0139-x

Keywords

Navigation