Skip to main content
Log in

Simulation study of slow extraction for the Shanghai Advanced Proton Therapy facility

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The Shanghai Advanced Proton Therapy facility employs third-integer slow extraction. In order to achieve accurate treatment, high-quality spill is needed. Therefore, parameters that may affect slow extraction should be investigated by simulation. A computer model of the synchrotron operation slow extraction was constructed with MATLAB®. By simulating the motion of the circulating protons, we could quantify the influence of machine and initial beam parameters on properties of the extracted beam, such as ripple, uniformity, stability, on- and off-time of the spill and spill width in the synchrotron. Suitable design parameters including the horizontal tunes, power supply ripple, longitudinal RF cavity voltage, RF-KO and the chromaticities were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.J. Bryant, L. Badano, M. Benedikt et al., Proton-ion medical machine study (PIMMS). CERN (1999). doi:10.1007/bf03038873

    Google Scholar 

  2. T. Furukawa, K. Noda, M. Muramatsu et al., New approach toward optimized resonant slow-extraction. Nucl. Instrum. Meth. A 515, 853–861 (2003). doi:10.1016/j.nima.2003.07.036

    Article  Google Scholar 

  3. T. Furukawa, K. Noda, M. Muramatsu et al., Global spill control in RF-knockout slow-extraction. Nucl. Instrum. Meth. A 522, 196–204 (2004). doi:10.1016/j.nima.2003.11.395

    Article  Google Scholar 

  4. T. Furukawa, K. Noda, T.H. Uesugi et al., Intensity control in RF-knockout extraction for scanning irradiation. Nucl. Instrum. Meth. B 240, 32–35 (2005). doi:10.1016/j.nimb.2005.06.083

    Article  Google Scholar 

  5. K. Mizushima, S. Sato, T. Shirai et al., Development of beam current control system in RF-knockout slow extraction. Nucl. Instrum. Meth. B 269, 2915–2918 (2011). doi:10.1016/j.nimb.2011.04.039

    Article  Google Scholar 

  6. M. Kirk, D. Ondreka, P. Spiller, SIS-18 RF knock-out optimization studies, in Proceedings of IPAC (2013). ISBN 978-3-95450-122-9

  7. S. Dan, L.H. Ouyang, M. Gu, The RF-knockout slow-extraction for Shanghai proton therapy facility. Nucl. Tech. 35(3), 231–235 (2012). (in Chinese)

    Google Scholar 

  8. K. Mizushima, T. Shirai, T. Furukawa et al., Making beam spill less sensitive to power supply ripple in resonant slow extraction. Nucl. Instrum. Meth. A 638, 19–23 (2011). doi:10.1016/j.nima.2011.02.056

    Article  Google Scholar 

  9. T. Furukawa, K. Noda, Fast beam cut-off method in RF-knockout extraction for spot-scanning. Nucl. Instrum. Meth. A 489, 59–67 (2002). doi:10.1016/s0168-9002(02)00895-1

    Article  Google Scholar 

  10. T. Furukawa, K. Noda, E. Urakabe et al., Characteristics of fast beam switching for spot scanning. Nucl. Instrum. Meth. A 503, 485–495 (2003). doi:10.1016/S0168-9002(03)01000-3

    Article  Google Scholar 

  11. T. Nakanishi, T. Furukawa, K. Yoshida et al., Slowbeam-extraction method using a fast Q-magnet assisted by RF-knockout. Nucl. Instrum. Meth. A 553, 400–406 (2005). doi:10.1016/j.nima.2005.07.023

    Article  Google Scholar 

  12. K. Mizushima, T. Shirai, T. Furukawa et al., Reduction of uncontrollable spilled beam in RF-knockout slow extraction. Nucl. Instrum. Meth. A 606, 325–329 (2009). doi:10.1016/j.nima.2009.05.154

    Article  Google Scholar 

  13. F. Méot, High-precision simulation of slow-extraction spill from a hadrontherapy synchrotron. Nucl. Instrum. Meth. A 595, 535–542 (2008). doi:10.1016/j.nima.2008.05.060

    Article  Google Scholar 

  14. S. Sato, T. Furukawa, K. Noda, Dynamic intensity control system with RF-knockout slow-extraction in the HIMAC synchrotron. Nucl. Instrum. Meth. A 574, 226–231 (2007). doi:10.1016/j.nima.2007.01.174

    Article  Google Scholar 

  15. H. Grot, F Christoph Iselin, The MAD Program User’s Reference Manual CERN/SL/90-13(AP)

  16. A. Terebilo, Accelerator Toolbox for MATLAB, SLAC-PUB-8732

  17. K. Noda, T. Furukawa, S. Shibuya et al., Source of spill ripple in the RF-KO slow-extraction method with FM and AM. Nucl. Instrum. Meth. A 492, 241–252 (2002). doi:10.1016/s0168-9002(02)01318-9

    Article  Google Scholar 

  18. K. Noda, T. Furukawa, S. Shibuya et al., Advanced RF-KO slow-extraction method for the reduction of spill ripple. Nucl. Instrum. Meth. A 492, 253–263 (2002). doi:10.1016/s0168-9002(02)01319-0

    Article  Google Scholar 

  19. K. Noda, M. Kanazawa, A. Itano et al., Slow beam extraction by a transverse RF field with AM and FM. Nucl. Instrum. Meth. A 374, 269–277 (1996). doi:10.1016/0168-9002(96)00096-4

    Article  Google Scholar 

  20. K. Mizushima, T. Furukawa, T. Shirai et al., Reliable beam-intensity control technique at the HIMAC synchrotron, in Proceedings of IBIC (2012). ISBN 978-3-95450-119-9

  21. J. Shi, J.C. Yang, J.W. Xia, RF knock-out extraction in HITFiL. Chin. Phys. C 36(10), 1004–1008 (2012). doi:10.1088/1674-1137/36/10/016

    Article  Google Scholar 

  22. M. Pullia, Transit time for third order resonance extraction. CERN/PS 96-36 (DI), October 1996

  23. T. Nakanishi, Dependence of a frequency bandwidth on a spill structure in the RF-knockout extraction. Nucl. Instrum. Meth. A 621, 62–67 (2010). doi:10.1016/j.nima.2010.04.070

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man-Zhou Zhang.

Additional information

This work was supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 20150210).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YH., Zhang, MZ. & Li, DM. Simulation study of slow extraction for the Shanghai Advanced Proton Therapy facility. NUCL SCI TECH 28, 120 (2017). https://doi.org/10.1007/s41365-017-0273-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0273-0

Keywords

Navigation