Skip to main content
Log in

Design of a rapid-cycling synchrotron for flash proton therapy

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The purpose of this study was to design a rapid-cycling synchrotron, making it capable of proton beam ultrahigh dose rate irradiation, inspired by laser accelerators. The design had to be cheap and simple. We consider our design from six aspects: the lattice, injection, extraction, space charge effects, eddy current effects and energy switching. Efficiency and particle quantity must be addressed when injected. The space charge effects at the injection could affect particles’ number. The eddy current effects in the vacuum chambers would affect the magnetic field itself and generate heat, all of which need to be taken into account. Fast extraction can obtain \(10^{10}\) protons/pulse, equal to instantaneous dose rate up to \(10^7\) Gy/s in a very short time, while changing various extraction energies rapidly and easily to various deposition depths. In the further research, we expect to combine a delivery system with this accelerator to realize the FLASH irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00186.00169 and https://cstr.cn/31253.11.sciencedb.j00186.00169.

References

  1. V. Favaudon, L. Caplier, V. Monceau et al., Ultrahigh dose-rate flash irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 6, 9 (2014). https://doi.org/10.1126/scitranslmed.3008973

    Article  Google Scholar 

  2. J.D. Wilson, E.M. Hammond, G.S. Higgins et al., Ultra-high dose rate (flash) radiotherapy: Silver bullet or fool’s gold? Front. Oncol. 9, 12 (2020). https://doi.org/10.3389/fonc.2019.01563

    Article  Google Scholar 

  3. H. Zhu, D. Xie, Y. Yang et al., Radioprotective effect of x-ray abdominal flash irradiation: adaptation to oxidative damage and inflammatory response may be benefiting factors. Med. Phys. 49, 4812–4822 (2022). https://doi.org/10.1002/mp.15680

    Article  Google Scholar 

  4. P. Montay-Gruel, A. Bouchet, M. Jaccard et al., X-rays can trigger the flash effect: ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiother. Oncol. 129, 582–588 (2018). https://doi.org/10.1016/j.radonc.2018.08.016

    Article  Google Scholar 

  5. E. Schüler, S. Trovati, G. King et al., Experimental platform for ultra-high dose rate flash irradiation of small animals using a clinical linear accelerator. Int. J. Radiat. Oncol. 97, 195–203 (2017). https://doi.org/10.1016/j.ijrobp.2016.09.018

    Article  Google Scholar 

  6. P. Montay-Gruel, M.M. Acharya, K. Petersson et al., Long-term neurocognitive benefits of flash radiotherapy driven by reduced reactive oxygen species. P Natl. Acad. Sci. USA 116, 10943–10951 (2019). https://doi.org/10.1073/pnas.1901777116

    Article  ADS  Google Scholar 

  7. T.F. Rösch, Z. Szabó, D. Haffa et al., A feasibility study of zebrafish embryo irradiation with laser-accelerated protons. Rev. Sci. Instrum. 91, 8 (2020). https://doi.org/10.1063/5.0008512

    Article  Google Scholar 

  8. E. Beyreuther, M. Brand, S. Hans et al., Feasibility of proton flash effect tested by zebrafish embryo irradiation. Radiother. Oncol. 139, 46–50 (2019). https://doi.org/10.1016/j.radonc.2019.06.024

    Article  Google Scholar 

  9. M.C. Vozenin, P. De Fornel, K. Petersson et al., The advantage of flash radiotherapy confirmed in mini-pig and cat-cancer patients. Clin. Cancer Res. 25, 35–42 (2019). https://doi.org/10.1158/1078-0432.Ccr-17-3375

    Article  Google Scholar 

  10. J. Bourhis, W.J. Sozzi, P.G. Jorge et al., Treatment of a first patient with flash-radiotherapy. Radiother. Oncol. 139, 18–22 (2019). https://doi.org/10.1016/j.radonc.2019.06.019

    Article  Google Scholar 

  11. S. Wei, C. Shi, C.C. Chen, et al., Recent progress in pencil beam scanning flash proton therapy: a narrative review. Ther. Radiol. Oncol. 6, 16 (2022). https://doi.org/10.21037/tro-22-1

  12. S. Van De Water, S. Safai, J.M. Schippers et al., Towards flash proton therapy: the impact of treatment planning and machine characteristics on achievable dose rates. ACTA Oncol. 58, 1463–1469 (2019). https://doi.org/10.1080/0284186X.2019.1627416

    Article  Google Scholar 

  13. M. Kang, S. Wei, J.I. Choi et al., Quantitative assessment of 3d dose rate for proton pencil beam scanning flash radiotherapy and its application for lung hypofractionation treatment planning. Cancers 13, 3549 (2021). https://doi.org/10.3390/cancers13143549

    Article  Google Scholar 

  14. P. van Marlen, M. Dahele, M. Folkerts et al., Bringing flash to the clinic: treatment planning considerations for ultrahigh dose-rate proton beams. Int. J. Radiat. Oncol. Biol. Phys. 106, 621–629 (2020). https://doi.org/10.1016/j.ijrobp.2019.11.011

    Article  Google Scholar 

  15. M. Krieger, S. van de Water, M.M. Folkerts et al., A quantitative flash effectiveness model to reveal potentials and pitfalls of high dose rate proton therapy. Med. Phys. 49, 2026–2038 (2022). https://doi.org/10.1002/mp.15459

    Article  Google Scholar 

  16. G. Adrian, E. Konradsson, M. Lempart et al., The flash effect depends on oxygen concentration. Brit. J. Radiol. 93, 20190702 (2020). https://doi.org/10.1259/bjr.20190702

    Article  Google Scholar 

  17. P. Wilson, B. Jones, T. Yokoi et al., Revisiting the ultra-high dose rate effect: implications for charged particle radiotherapy using protons and light ions. Brit. J. Radiol. 85, e933-e939 (2012). https://doi.org/10.1259/bjr/17827549

    Article  Google Scholar 

  18. H. Gao, J. Liu, Y. Lin et al., Simultaneous dose and dose rate optimization (SDDRO) of the flash effect for pencil-beam-scanning proton therapy. Med. Phys. 49, 2014–2025 (2022). https://doi.org/10.1002/mp.15356

    Article  Google Scholar 

  19. Z. Mei, Y. Yuan, J. Wang et al. Focused proton beam generating pseudo bragg peak for flash therapy. Nucl. Instrum. Meth. A 1032, 166618 (2022). https://doi.org/10.1016/j.nima.2022.166618

  20. J. Bin, L. Obst-Huebl, J.H. Mao et al., A new platform for ultra-high dose rate radiobiological research using the bella pw laser proton beamline. Sci. Rep-UK 12, 1484 (2022). https://doi.org/10.1038/s41598-022-05181-3

    Article  ADS  Google Scholar 

  21. S. Boucher, E. Esarey, C. Geddes et al., Transformative technology for flash radiation therapy: a snowmass 2021 white paper. arXiv preprint arXiv:2203.11047

  22. L. Labate, D. Palla, D. Panetta et al., Toward an effective use of laser-driven very high energy electrons for radiotherapy: feasibility assessment of multi-field and intensity modulation irradiation schemes. Sci. Rep-UK 10, 11 (2020). https://doi.org/10.1038/s41598-020-74256-w

    Article  Google Scholar 

  23. S. Auer, V. Hable, C. Greubel et al., Survival of tumor cells after proton irradiation with ultra-high dose rates. Radiat. Oncol. 6, 139 (2011). https://doi.org/10.1186/1748-717X-6-139

    Article  Google Scholar 

  24. G. Aymar, T. Becker, S. Boogert et al., Lhara: the laser-hybrid accelerator for radiobiological applications. Front. Phys.-LAUSANNE 8, 21 (2020). https://doi.org/10.3389/fphy.2020.567738

  25. J. Bin, K. Allinger, W. Assmann et al., A laser-driven nanosecond proton source for radiobiological studies. Appl. Phys. Lett. 101, 4 (2012). https://doi.org/10.1063/1.4769372

    Article  Google Scholar 

  26. S. Jolly, H. Owen, M. Schippers et al., Technical challenges for flash proton therapy. Phys. Medica 78, 71–82 (2020). https://doi.org/10.1016/j.ejmp.2020.08.005

    Article  Google Scholar 

  27. E.S. Diffenderfer, I.I. Verginadis, M.M. Kim et al., Design, implementation, and in vivo validation of a novel proton flash radiation therapy system. Int. J. Radiat. Oncol. 106, 440–448 (2020). https://doi.org/10.1016/j.ijrobp.2019.10.049

    Article  Google Scholar 

  28. A. Patriarca, C. Fouillade, M. Auger et al., Experimental set-up for flash proton irradiation of small animals using a clinical system. Int. J. Radiat. Oncol. 102, 619–626 (2018). https://doi.org/10.1016/j.ijrobp.2018.06.403

    Article  Google Scholar 

  29. W.C. Fang, X.X. Huang, J.H. Tan et al., Proton linac-based therapy facility for ultra-high dose rate (flash) treatment. Nucl. Sci. Tech. 32, 9 (2021). https://doi.org/10.1007/s41365-021-00872-4

    Article  Google Scholar 

  30. Y. Zhang, W.C. Fang, X.X. Huang, et al., Design, fabrication, and cold test of an s-band high-gradient accelerating structure for compact proton therapy facility. Nucl. Sci. Tech. 32, 38 (2021). https://doi.org/10.1007/s41365-021-00869-z

  31. Y.Q. Yang, W.C. Fang, X.X. Huang, et al., Static superconducting gantry-based proton ct combined with x-ray ct as prior image for flash proton therapy. Nucl. Sci. Tech. 34, 11 (2023). https://doi.org/10.1007/s41365-022-01163-2

  32. L.M. Smyth, J.F. Donoghue, J.A. Ventura, et al., Comparative toxicity of synchrotron and conventional radiation therapy based on total and partial body irradiation in a murine model. Sci. Rep.-UK 8, 12044 (2018). https://doi.org/10.1038/s41598-018-30543-1

  33. S. Kraft, C. Richter, K. Zeil et al., Dose-dependent biological damage of tumour cells by laser-accelerated proton beams. New. J. Phys. 12, 12 (2010). https://doi.org/10.1088/1367-2630/12/8/085003

    Article  Google Scholar 

  34. X. Li, Y.H. Pu, F. Yang et al., Rf design and study of a 325 MHz 7 MeV APF IH-DTL for an injector of a proton medical accelerator. Nucl. Sci. Tech. 30, 135 (2019). https://doi.org/10.1007/s41365-019-0657-4

    Article  Google Scholar 

  35. Y.H. Yang, M.Z. Zhang, D.M. Li, Simulation study of slow extraction for the shanghai advanced proton therapy facility. Nucl. Sci. Tech. 28, 7 (2017). https://doi.org/10.1007/s41365-017-0273-0

    Article  Google Scholar 

  36. M. Ferrario, M. Migliorati, L. Palumbo, Space charge effects. CERN-2014/009 . https://doi.org/10.5170/CERN-2014-009.331

  37. M.Z. Zhang, M. Zhang, X.C. Xie et al., Eddy current effects in a high field dipole. Nucl. Sci. Tech. 28, 6 (2017). https://doi.org/10.1007/s41365-017-0325-5

    Article  Google Scholar 

  38. S.Y. Xu, S. Wang, Study of eddy current power loss in an rcs vacuum chamber. Chinese Phys. C 36, 160–166 (2012). https://doi.org/10.1088/1674-1137/36/2/011

    Article  ADS  Google Scholar 

  39. A. Lachaize, Estimate of eddy current effects in the vacuum chamber of the beta-beam rcs. https://cds.cern.ch/record/1355340

  40. N.S. Sereno, S.H. Kim, Eddy-current-induced multipole field calculations. Report, Argonne National Lab., IL (US) (2003). https://doi.org/10.2172/816760

  41. G. Hemmie, J. Rossbach, Eddy current effects in the desy ii dipole vacuum chamber. Report (1984)

  42. D. Trbojevic, J. Alessi, M. Blaskiewicz, et al., Lattice design of a rapid cycling medical synchrotron for carbon/proton therapy. Proceedings of IPAC, 2011 WEPS028 (2011)

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Ying Shi and Man-Zhou Zhang. The first draft of the manuscript was written by Ying Shi and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. The software use was helped by Lian-Hua Ou-Yang. And the article was supervised and revised by Man-Zhou Zhang, Zhi-Ling Chen, Xiu-Fang Li and De-Ming Li.

Corresponding author

Correspondence to Man-Zhou Zhang.

Ethics declarations

Conflict of interest

Man-Zhou Zhang is an editorial board member for Nuclear Science and Techniques and was not involved in the editorial review, or the decision to publish this article. All authors declare that there are no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Zhang, MZ., Ou-Yang, LH. et al. Design of a rapid-cycling synchrotron for flash proton therapy. NUCL SCI TECH 34, 145 (2023). https://doi.org/10.1007/s41365-023-01283-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01283-3

Keywords

Navigation