Skip to main content
Log in

Thermo-magnetic effects in quark matter: Nambu-Jona-Lasinio model constrained by lattice QCD

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The phenomenon of inverse magnetic catalysis of chiral symmetry in QCD predicted by lattice simulations can be reproduced within the Nambu-Jona-Lasinio model if the coupling G of the model decreases with the strength B of the magnetic field and temperature T. The thermo-magnetic dependence of G(B, T) is obtained by fitting recent lattice QCD predictions for the chiral transition order parameter. Different thermodynamic quantities of magnetized quark matter evaluated with G(B, T) are compared with the ones obtained at constant coupling, G. The model with G(B, T) predicts a more dramatic chiral transition as the field intensity increases. In addition, the pressure and magnetization always increase with B for a given temperature. Being parametrized by four magnetic-field-dependent coefficients and having a rather simple exponential thermal dependence our accurate ansatz for the coupling constant can be easily implemented to improve typical model applications to magnetized quark matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008)

    Article  ADS  Google Scholar 

  2. D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 80, 0304028 (2009)

    Article  ADS  Google Scholar 

  3. R. Duncan, C. Thompson, Astron. J. 32, L9 (1992)

    Article  ADS  Google Scholar 

  4. C. Kouveliotou et al., Nature 393, 235 (1998)

    Article  ADS  Google Scholar 

  5. V.A. Miransky, I.A. Shovkovy, Phys. Rep. 576, 1 (2015)

    Article  ADS  Google Scholar 

  6. J.O. Andersen, W.R. Naylor, A. Tranberg, Rev. Mod. Phys. 88, 025001 (2016)

    Article  ADS  Google Scholar 

  7. K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013)

    Article  MathSciNet  Google Scholar 

  8. K. Tuchin, Phys. Rev. C 88, 024911 (2013)

    Article  ADS  Google Scholar 

  9. L. McLerran, V. Skokov, Nucl. Phys. A 929, 184 (2014)

    Article  ADS  Google Scholar 

  10. D.M. Sedrakian, D. Blaschke, Astrophysics 45, 166 (2002) Astrofiz. 45

    Article  ADS  Google Scholar 

  11. D. Blaschke, D.M. Sedrakian, K.M. Shahabasian, ASP Conf. Ser. 202, 607 (2000)

    ADS  Google Scholar 

  12. G.S. Bali, F. Bruckmann, G. Endrödi, Z. Fodor, S.D. Katz, S. Krieg, A. Schäfer, K.K. Szabó, JHEP 02, 044 (2012)

    Article  ADS  Google Scholar 

  13. G.S. Bali, F. Bruckmann, G. Endrödi, Z. Fodor, S.D. Katz, A. Schäfer, Phys. Rev. D 86, 071502(R) (2012)

    Article  ADS  Google Scholar 

  14. E.S. Fraga, L.F. Palhares, Phys. Rev. D 86, 016008 (2012)

    Article  ADS  Google Scholar 

  15. K. Fukushima, Y. Hidaka, Phys. Rev. Lett. 110, 031601 (2013)

    Article  ADS  Google Scholar 

  16. T. Kojo, N. Su, Phys. Lett. B 720, 192 (2013)

    Article  ADS  Google Scholar 

  17. F. Bruckmann, G. Endrodi, T.G. Kovacs, JHEP 04, 112 (2013)

    Article  ADS  Google Scholar 

  18. E.S. Fraga, J. Noronha, L.F. Palhares, Phys. Rev. D 87, 114014 (2013)

    Article  ADS  Google Scholar 

  19. Y. Sakai, T. Sasaki, H. Kouno, M. Yahiro, Phys. Rev. D 82, 076003 (2010)

    Article  ADS  Google Scholar 

  20. Y. Sakai, T. Sasaki, H. Kouno, M. Yahiro, J. Phys. G 39, 035004 (2012)

    Article  ADS  Google Scholar 

  21. T. Sasaki, Y. Sakai, H. Kouno, M. Yahiro, Phys. Rev. D 84, 091901(R) (2011)

    Article  ADS  Google Scholar 

  22. K. Fukushima, M. Ruggieri, R. Gatto, Phys. Rev. D 81, 114031 (2010)

    Article  ADS  Google Scholar 

  23. M. Ferreira, P. Costa, D.P. Menezes, C. Providência, N. Scoccola, Phys. Rev. D 89, 016002 (2014)

    Article  ADS  Google Scholar 

  24. E.S. Fraga, B.W. Mintz, J. Schaffner-Bielich, Phys. Lett. B 731, 154 (2014)

    Article  ADS  Google Scholar 

  25. C. Bonati, M. D'Elia, M. Mariti, M. Mesiti, F. Negro, F. Sanfilippo, Phys. Rev. D 89, 114502 (2014)

    Article  ADS  Google Scholar 

  26. A. Ayala, L.A. Hernández, A.J. Mizher, J.C. Rojas, C. Villavicencio, Phys. Rev. D 89, 116017 (2014)

    Article  ADS  Google Scholar 

  27. M. Ferreira, P. Costa, C. Providência, Phys. Rev. D 90, 016012 (2014)

    Article  ADS  Google Scholar 

  28. A. Ayala, M. Loewe, A.J. Mizher, R. Zamora, Phys. Rev. D 90, 036001 (2014)

    Article  ADS  Google Scholar 

  29. A. Ayala, M. Loewe, R. Zamora, Phys. Rev. D 91, 016002 (2015)

    Article  ADS  Google Scholar 

  30. E.J. Ferrer, V. de la Incera, X.J. Wen, Phys. Rev. D 91, 054006 (2015)

    Article  ADS  Google Scholar 

  31. G. Cao, L. He, P. Zhuang, Phys. Rev. D 90, 056005 (2014)

    Article  ADS  Google Scholar 

  32. Sh. Fayazbakhsh, N. Sadooghi, Phys. Rev. D 90, 105030 (2014)

    Article  ADS  Google Scholar 

  33. J.O. Andersen, W.R. Naylor, A. Tranberg, JHEP 02, 042 (2015)

    Article  ADS  Google Scholar 

  34. K. Kamikado, T. Kanazawa, JHEP 01, 129 (2015)

    Article  ADS  Google Scholar 

  35. A. Ayala, J.J.C. Martínez, M. Loewe, M.E.T. Yeomans, R. Zamora, Phys. Rev. D 91, 016007 (2015)

    Article  ADS  Google Scholar 

  36. G. Endrödi, PoS LATTICE2014, 018 (2014)

    Google Scholar 

  37. L. Yu, J.V. Doorsselaere, M. Huang, Phys. Rev. D 91, 074011 (2015)

    Article  ADS  Google Scholar 

  38. B. Feng, De-fu Hou, Hai-cang Ren, Phys. Rev. D 92, 065011 (2015)

    Article  ADS  Google Scholar 

  39. J. Braun, W.A. Mian, S. Rechenberger, arXiv:1412.6025 [hep-ph]

  40. N. Mueller, J.M. Pawlowski, Phys. Rev. D 91, 116010 (2015)

    Article  ADS  Google Scholar 

  41. A. Ayala, C.A. Dominguez, L.A. Hernandez, M. Loewe, J.C. Rojas, C. Villavicencio, Phys. Rev. D 92, 016006 (2015)

    Article  ADS  Google Scholar 

  42. G. Endrödi, JHEP 07, 173 (2015)

    Article  ADS  Google Scholar 

  43. D.P. Menezes, L.L. Lopes, Eur. Phys. J. A 52, 17 (2016)

    Article  ADS  Google Scholar 

  44. R. Rougemont, R. Critelli, J. Noronha, Phys. Rev. D 93, 045013 (2016)

    Article  ADS  Google Scholar 

  45. R.Z. Denke, M.B. Pinto, arXiv:1506.05434 [hep-ph]

  46. D.P. Menezes, M.B. Pinto, C. Providência, Phys. Rev. C 91, 065205 (2015)

    Article  ADS  Google Scholar 

  47. P. Costa, M. Ferreira, D.P. Menezes, J. Moreira, C. Providência, Phys. Rev. D 92, 036012 (2015)

    Article  ADS  Google Scholar 

  48. A. Ayala, C.A. Dominguez, L.A. Hernández, M. Loewe, R. Zamora, Phys. Rev. D 92, 096011 (2015) Phys. Rev. D 92

    Article  ADS  Google Scholar 

  49. G. Cao, X.G. Huang, Phys. Rev. D 93, 016007 (2016)

    Article  ADS  Google Scholar 

  50. R. Yoshiike, T. Tatsumi, Phys. Rev. D 92, 116009 (2015)

    Article  ADS  Google Scholar 

  51. K. Hattori, T. Kojo, Nan Su, Nucl. Phys. A 951, 1 (2016)

    Article  ADS  Google Scholar 

  52. B. Feng, D. Hou, H.C. Ren, P.P. Wu, Phys. Rev. D 93, 085019 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  53. G. Cao, A. Huang, Phys. Rev. D 93, 076007 (2016)

    Article  ADS  Google Scholar 

  54. C.F. Li, L. Yang, X.J. Wen, G.X. Peng, Phys. Rev. D 93, 054005 (2016)

    Article  ADS  Google Scholar 

  55. A. Ahmad, A. Raya, J. Phys. G 43, 065002 (2016)

    Article  ADS  Google Scholar 

  56. V. Bernard, U.G. Meissner, Ann. Phys. 206, 50 (1991)

    Article  ADS  Google Scholar 

  57. M.B. Pinto, Phys. Rev. D 50, 7673 (1994)

    Article  ADS  Google Scholar 

  58. R.L.S. Farias, K.P. Gomes, G. Krein, M.B. Pinto, Phys. Rev. C 90, 025203 (2014)

    Article  ADS  Google Scholar 

  59. M. Ferreira, P. Costa, O. Lourenço, T. Frederico, C. Providência, Phys. Rev. D 89, 116011 (2014)

    Article  ADS  Google Scholar 

  60. A. Ayala, C.A. Dominguez, L.A. Hernandez, M. Loewe, R. Zamora, Phys. Lett. B 759, 99 (2016)

    Article  ADS  Google Scholar 

  61. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)

    Article  ADS  Google Scholar 

  62. D. Ebert, K.G. Klimenko, Nucl. Phys. A 728, 203 (2003)

    Article  ADS  Google Scholar 

  63. D.P. Menezes, M.B. Pinto, S.S. Avancini, A.P. Martínez, C. Providência, Phys. Rev. C 79, 035807 (2009)

    Article  ADS  Google Scholar 

  64. P.G. Allen, A.G. Grunfeld, N.N. Scoccola, Phys. Rev. D 92, 074041 (2015)

    Article  ADS  Google Scholar 

  65. D.C. Duarte, P.G. Allen, R.L.S. Farias, P.H.A. Manso, R.O. Ramos, N.N. Scoccola, Phys. Rev. D 93, 025017 (2016)

    Article  ADS  Google Scholar 

  66. S.S. Avancini, W.R. Tavares, M.B. Pinto, Phys. Rev. D 93, 014010 (2016)

    Article  ADS  Google Scholar 

  67. S.S. Avancini, R.L.S. Farias, M.B. Pinto, W.R. Tavares, V.S. Timóteo, Phys. Lett. B 767, 247 (2017)

    Article  ADS  Google Scholar 

  68. S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  69. M. Buballa, Phys. Rep. 407, 205 (2005)

    Article  ADS  Google Scholar 

  70. G.N. Ferrari, A.F. Garcia, M.B. Pinto, Phys. Rev. D 86, 096005 (2012)

    Article  ADS  Google Scholar 

  71. J.K. Boomsma, D. Boer, Phys. Rev. D 81, 074005 (2010)

    Article  ADS  Google Scholar 

  72. G.S. Bali, F. Bruckmann, G. Endrödi, S.D. Katz, A. Schäfer, JHEP 08, 177 (2014)

    Article  ADS  Google Scholar 

  73. R.L.S. Farias, V.S. Timóteo, S. Avancini, M.B. Pinto, G. Krein, J. Phys. Conf. Ser. 706, 052029 (2016)

    Article  Google Scholar 

  74. A. Ayala, C.A. Dominguez, L.A. Hernandez, M. Loewe, A. Raya, J.C. Rojas, C. Villavicencio, Phys. Rev. D 94, 054019 (2016)

    Article  ADS  Google Scholar 

  75. S. Mao, Phys. Lett. B 758, 195 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo L. S. Farias.

Additional information

Communicated by L. Tolos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farias, R.L.S., Timóteo, V.S., Avancini, S.S. et al. Thermo-magnetic effects in quark matter: Nambu-Jona-Lasinio model constrained by lattice QCD. Eur. Phys. J. A 53, 101 (2017). https://doi.org/10.1140/epja/i2017-12320-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12320-8

Navigation