Skip to main content
Log in

Rapid determination of radon monitor’s calibration factors

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The monitors used to measure radon concentration must be calibrated, and the calibration factor of each measurement cycle should be determined. Thus, the determination time of calibration factors of NRL-II radon monitors should be reduced. In this study, a method is proposed to determine the calibration factors of radon monitors rapidly. In the proposed method, the calibration factor is initially determined in the 60-min measurement cycle; the calibration factor is then identified in the other measurement cycle on the basis of the principle that the calibration factor of the same radon monitor in different measurement cycles is inversely proportional to the number of α particles produced by 218Po decay in this cycle. Results demonstrate that the calculated calibration factor of the different measurement cycles is consistent with the experimental calibration factor. Therefore, this method is reliable and can be used to determine the calibration factor of radon monitors rapidly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization, WHO handbook on indoor radon: a public health perspective (World Health Organization, 2009). http://www.nrsb.org/pdf/WHO%20Radon%20Handbook.pdf

  2. S.D. Chambers, F. Wang, A.G. Williams et al., Quantifying the influences of atmospheric stability on air pollution in Lanzhou, China, using a radon-based stability monitor. Atmos. Environ. 107, 233–243 (2015). doi:10.1016/j.atmosenv.2015.02.016

    Article  Google Scholar 

  3. F. Lamonaca, V. Nastro, A. Nastro et al., Monitoring of indoor radon pollution. Measurement 47, 228–233 (2014). doi:10.1016/j.measurement.2013.08.058

    Article  Google Scholar 

  4. D.E. Tchorz-Trzeciakiewicz, T. Parkitny, Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route “Coal Mine”(SW Poland). J. Environ. Radioact. 149, 90–98 (2015). doi:10.1016/j.jenvrad.2015.07.006

    Article  Google Scholar 

  5. G. De Simone, G. Galli, C. Lucchetti et al., Using natural radon as a tracer of gasoline contamination. Procedia Earth Planet. Sci. 13, 104–107 (2015). doi:10.1016/j.proeps.2015.07.025

    Article  Google Scholar 

  6. T. Kuo, F. Tsunomori, Estimation of fracture porosity using radon as a tracer. J. Pet. Sci. Eng. 122, 700–704 (2014). doi:10.1016/j.petrol.2014.09.012

    Article  Google Scholar 

  7. C. Loisy, A. Cerepi, Radon-222 as a tracer of water–air dynamics in the unsaturated zone of a geological carbonate formation: example of an underground quarry (Oligocene Aquitain limestone, France). Chem. Geol. 296, 39–49 (2012). doi:10.1016/j.chemgeo.2011.12.010

    Article  Google Scholar 

  8. Q. Ye, R.P. Singh, A. He et al., Characteristic behavior of water radon associated with Wenchuan and Lushan earthquakes along Longmenshan fault. Radiat. Meas. 76, 44–53 (2015). doi:10.1016/j.radmeas.2015.04.001

    Article  Google Scholar 

  9. F. Külahcı, M. İnceöz, M. Doğru et al., Artificial neural network model for earthquake prediction with radon monitoring. Appl. Radiat. Isot. 67(1), 212–219 (2009). doi:10.1016/j.apradiso.2008.08.003

    Article  Google Scholar 

  10. E. Florido, F. Martínez-Álvarez, A. Morales-Esteban et al., Detecting precursory patterns to enhance earthquake prediction in Chile. Comput. Geosci. 76, 112–120 (2015). doi:10.1016/j.cageo.2014.12.002

    Article  Google Scholar 

  11. A. Pasculli, S. Palermi, A. Sarra et al., A modelling methodology for the analysis of radon potential based on environmental geology and geographically weighted regression. Environ. Model. Softw. 54, 165–181 (2014). doi:10.1016/j.envsoft.2014.01.006

    Article  Google Scholar 

  12. J. Elío, M.F. Ortega, B. Nisi et al., Evaluation of the applicability of four different radon measurement techniques for monitoring CO 2 storage sites. Int. J. Greenh. Gas Control 41, 1–10 (2015). doi:10.1016/j.ijggc.2015.06.021

    Article  Google Scholar 

  13. Y. Tan, D. Xiao, A novel algorithm for quick and continuous tracing the change of radon concentration in environment. Rev. Sci. Instrum. 82(4), 043503 (2011). doi:10.1063/1.3572271

    Article  MathSciNet  Google Scholar 

  14. Y. Takeuchi, K. Okumura, T. Kajita et al., Development of high sensitivity radon detectors. Nucl. Instrum. Methods Phys. Res. A 421(1), 334–341 (1999). doi:10.1016/S0168-9002(98)01204-2

    Article  Google Scholar 

  15. A. Vargas, X. Ortega, J.L.M. Matarranz, Traceability of radon-222 activity concentration in the radon chamber at the technical university of Catalonia (Spain). Nucl. Instrum. Methods Phys. Res. A 526(3), 501–509 (2004). doi:10.1016/j.nima.2004.02.022

    Article  Google Scholar 

  16. L.I. Zhe, T.U.O. Xianguo, S.H.I. Rui et al., Analytic fitting and simulation methods for characteristic X-ray peaks from Si-PIN detector. Nucl. Sci. Tech. 24(6), 060206 (2013). doi:10.13538/j.1001-8042/nst.2013.06.007

  17. W. Fang-Fang, Z. Ze-Ran, Y. Yong-Liang et al., Calibration method for electrode gains in an axially symmetric stripline BPM. Nucl. Sci. Tech. (2014). doi:10.13538/j.1001-8042/nst.25.050102

    Google Scholar 

  18. A. Sorimachi, H. Takahashi, S. Tokonami, Influence of the presence of humidity, ambient aerosols and thoron on the detection responses of electret radon monitors. Radiat. Meas. 44(1), 111–115 (2009). doi:10.1016/j.radmeas.2008.10.009

    Article  Google Scholar 

  19. P. De Felice, X. Myteberi, The 222 Rn reference measurement system developed at ENEA. Nucl. Instrum. Methods Phys. Res. A 369(2), 445–451 (1996). doi:10.1016/S0168-9002(96)80028-3

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos. 11475082, 11375083, and 11275096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Tao Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZQ., Xiao, DT., Zhao, GZ. et al. Rapid determination of radon monitor’s calibration factors. NUCL SCI TECH 27, 116 (2016). https://doi.org/10.1007/s41365-016-0118-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0118-2

Keywords

Navigation