Skip to main content
Log in

Measuring the effect of wind-driven processes on coastal dunes: a study of the Atlantis and Geelbek dune fields along the West Coast of South Africa

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Dunes are dynamic features that can change location, shape or extent depending on wind direction and strength, the vegetation cover, temperature and moisture. This study focus on the primary factors impacting the change dynamics of sand dunes which are wind direction and wind strength. Two methods exist for measuring and detecting sand dune movements, namely, in situ surveys and change detection through remote sensing. This study applied change detection through remote sensing by using satellite imagery as methodology to monitor the movement and extent of change of two prominent coastal sand dunes located along the West Coast of South Africa. The significance of this study is to highlight the changes that occurred in the Atlantis and Geelbek coastal dune fields over the period 1998 to 2018 ascribable to the effect of wind-driven processes. The results showed that both these two dunes experienced more or less the same extent of movement and the direction of movement correlated well with the direction of the stronger summer wind-driven processes on the West Coast. However, it was also recorded that the extent of change of the dune fields were irregular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Els, A. (2017). Tracking sand dune movements using multi-temporal remote sensing imagery: A case study of central Sahara (Libyan Fazzan/Ubari Sand Sea).

  2. Tsoar, H. (2001). Types of aeolian sand dunes and their formation. In N. J. Balmforth & A. Provenzale (Eds.), Geomorphological fluid mechanics (pp. 403–429). Springer.

  3. Levin, N., Levental, S., & Morag, H. (2012). The effect of wildfires on vegetation cover and dune activity in Australia’s desert dunes: A multisensor analysis. International Journal of Wildland Fire, 21(4), 459–475.

    Article  Google Scholar 

  4. Bar, P., Becker, N., & Segev, M. (2016). Sand dunes management: A comparative analysis of ecological versus economic valuations applied to the Coastal region in Israel. Regional Environmental Change, 16(4), 941–950.

    Article  Google Scholar 

  5. Khanamani, A., Fathizad, H., Karimi, H., & Shojaei, S. (2017). Assessing desertification by using soil indices. Arabian Journal of Geosciences, 10(13), 287.

    Article  Google Scholar 

  6. Alipur, H., Zare, M., & Shojaei, S. (2016). Assessing the degradation of vegetation of arid zones using FAO–UNIP model (case study: Kashan zone). Modeling Earth Systems and Environment, 2(4), 1–6.

    Article  Google Scholar 

  7. Masselink, G., & Hughes, M. G. (2014). An introduction to coastal processes and geomorphology. Abingdon: Routledge.

    Book  Google Scholar 

  8. Puppin, A. (2017). Relationship between geomorphology and quality of the semi-fixed dune landscape. Venice: Università Ca’Foscari Venezia.

    Google Scholar 

  9. Sigren, J. M., Figlus, J., & Armitage, A. R. (2014). Coastal sand dunes and dune vegetation: Restoration, erosion, and storm protection. Shore & Beach, 82(4), 5–12.

    Google Scholar 

  10. Varma, S., Shah, V., Banerjee, B., & Buddhiraju, K. M. (2014). Change detection of desert sand dunes: A remote sensing approach. Advances in Remote Sensing, 3, 10–22.

    Article  Google Scholar 

  11. Feagin, R. A., Furman, M., Salgado, K., Martinez, M. L., Innocenti, R. A., Eubanks, K., et al. (2019). The role of beach and sand dune vegetation in mediating wave run up erosion. Estuarine, Coastal and Shelf Science, 219, 97–106.

    Article  Google Scholar 

  12. Sparavigna, A. C. (2013). A study of moving sand dunes by means of satellite images. International Journal of Sciences, 2, 33–42. https://doi.org/10.18483/ijsci.229.

    Article  Google Scholar 

  13. Fadhil, A.M. (2013). Sand dunes monitoring using remote sensing and GIS techniques for some sites in Iraq. In PIAGENG 2013: Intelligent information, control, and communication technology for agricultural engineering. 8762. 876206. International Society for Optics and Photonics. https://doi.org/10.1117/12.2019735.

  14. Parsons, A. J., & Abrahams, A. D. (Eds.). (2009). Geomorphology of desert environments. In Geomorphology of desert environments (pp. 3–7). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-5719-9.

  15. Lancaster, N. (2008). Desert dune dynamics and development: Insights from luminescence dating. Boreas, 37(4), 559–573.

    Article  Google Scholar 

  16. Ghadiry, M., Shalaby, A., & Koch, B. (2012). A new GIS-based model for automated extraction of Sand Dune encroachment case study: Dakhla Oases, western desert of Egypt. The Egyptian Journal of Remote Sensing and Space Science, 15(1), 53–65.

    Article  Google Scholar 

  17. Donato, T. F., & Klemas, V. V. (2001). Remote sensing and modeling applications for coastal resource management. Geocarto International, 16(2), 25–32. https://doi.org/10.1080/10106040108542190.

    Article  Google Scholar 

  18. Aliabad, F. A., & Shojaei, S. (2019). The impact of drought and decline in groundwater levels on the spread of sand dunes in the plain in Iran. Sustainable Water Resources Management, 5(2), 541–555.

    Article  Google Scholar 

  19. Martínez, M. L., Psuty, N. P. & Lubke, R. A. (2008). A perspective on coastal dunes. In Coastal dunes (pp. 3–10). Berlin: Springer.

  20. Dibble, H. L., & McPherron, S. (1996). A multimedia companion to the Middle Paleolithic site of Combe-Capelle Bas (France). Philadelphia: University of Pennsylvania Museum.

    Google Scholar 

  21. Jerardino, A. M. S., Malan, A., & Braun, D. (2013). The archaeology of the West Coast of South Africa. Oxford: Archaeopress.

    Book  Google Scholar 

  22. Tamani, F., Hadji, R., Hamad, A., & Hamed, Y. (2019). Integrating remotely sensed and GIS data for the detailed geological mapping in semi-arid regions: Case of Youks les Bains Area, Tebessa Province, NE Algeria. Geotechnical and Geological Engineering, 37(4), 2903–2913. https://doi.org/10.1007/s10706-019-00807-2.

    Article  Google Scholar 

  23. Alphan, H., Doygun, H., & Unlukaplan, Y. I. (2009). Post-classification comparison of land cover using multitemporal Landsat and ASTER imagery: The case of Kahramanmaraş, Turkey. Environmental Monitoring and Assessment, 151(1–4), 327–336.

    Article  Google Scholar 

  24. Azzaoui, M. A., Adnani, M., El Belrhiti, H., Chaouki, I. E., & Masmoudi, L. (2019). Detection of crescent sand dunes contours in satellite images using an active shape model with a cascade classifier. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W12, 17–24. https://doi.org/10.5194/isprs-archives-XLII-4-W12-17-2019.

    Article  Google Scholar 

  25. Vihervaara, P., Viinikka, A., Brander, L., Santos-Martín, F., Poikolainen, L., & Nedkov, S. (2019). Methodological interlinkages for mapping ecosystem services—From data to analysis and decision-support. One Ecosystem, 4, e26368.

    Article  Google Scholar 

  26. Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation. Hoboken: Wiley.

    Google Scholar 

  27. Campbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing. New York: Guilford Press.

    Google Scholar 

  28. Liu, J. G., & Mason, P. J. (2013). Essential image processing and GIS for remote sensing. Hoboken: Wiley.

    Google Scholar 

  29. Li, D. (2010). Remotely sensed images and GIS data fusion for automatic change detection. International Journal of Image and Data Fusion, 1(1), 99–108.

    Article  Google Scholar 

  30. Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365–2401.

    Article  Google Scholar 

  31. Franceschini, G. (2003). Geology of aeolian and marine deposits in the Saldanha Bay region, Western Cape, South Africa (Doctoral dissertation, University of Cape Town).

  32. Martini, I. P., & Wanless, H. R. (Eds.). (2014). Sedimentary coastal zones from high to low latitudes: Similarities and differences. London: Geological Society of London.

    Google Scholar 

  33. Western Cape Department of Environmental Affairs and Development Planning. (2014). Western Cape provincial spatial development framework, March 2014.

  34. Potgieter, T., & Smit, H. A. P. (2018). Waster geography: The British annexation of the Cape in 1795. In J. Bezuidenhout & H. A. P. Smit (Eds.), African military geosciences: Military history and the physical environment. African military studies (Vol. 1, pp. 84–85). Stellenbosch: Stellenbosch university: AFRICAN SUN MeDIA.

    Google Scholar 

  35. Boucher, C. (1981). Dune plumes in the Western Cape. Veld & Flora, 67, 11–13.

    Google Scholar 

  36. CSIR. (2014). Environmental screening study for a proposed LNG terminal at Saldanha and associated pipeline infrastructures to Atlantis and Cape Town, Western Cape, South Africa. Retrieved September 13, 2019 from https://www.westerncape.gov.za/110green/files/atoms/files/lng_ess_chapter_5.pdf.

  37. Fuchs, M., Kandel, A., Conard, N., Walker, S., & Felix-Henningsen, P. (2008). Geoarchaeological and chronostratigraphical investigations of open-air sites in the Geelbek Dunes, South Africa. Geoarchaeology: An International Journal, 23(4), 425–449.

    Article  Google Scholar 

  38. McKie, C. (September 2014). Integrated reserve management plan: Witzands Aquifer Nature Reserve, City of Cape Town. http://resource.capetown.gov.za/documentcentre/Documents/City%20strategies,%20plans%20and%20frameworks/Witzands_IRMP_Sep2014v02_Final.pdf. Retrieved August 21, 2019.

  39. Cape Town Tourism. (2019). Adventure awaits at the Atlantis Dunes. I love Cape Town. Retrieved August 23, 2019 from https://www.capetown.travel/atlantis-dunes/.

  40. City of Cape Town. (2019). Witzands aquifer nature reserve. http://www.capetown.gov.za/Family%20and%20home/see-all-city-facilities/our-recreational-facilities/Nature%20reserves/Witzands%20Aquifer%20Nature%20Reserve. Retrieved August 23, 2019.

  41. Compton, J. S., & Franceschini, G. (2005). Holocene geoarchaeology of the sixteen mile beach barrier dunes in the Western Cape, South Africa. Quaternary Research, 63(1), 99–107.

    Article  Google Scholar 

  42. South African National Parks. (2019). West Coast National Park Visitor’s Map: Guide to West Coast National Park. https://www.sanparks.org/assets/docs/parks_west_coast/visitor_brochure.pdf. Retrieved August 21, 2019.

  43. Mucina, L., & Rutherford, M. (2006). The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. (South African National Biodiversity Institute: Pretoria, South Africa). Pretoria: Memoirs of the Botanical Survey of South Africa.

    Google Scholar 

  44. Charters, M. L. (2015). Flora of Southern Africa: Essay on Flora of the Western Cape. http://www.calflora.net/southafrica/index.html. Retrieved August 21, 2019.

  45. Manning, J., & Goldblatt, P. (2012). Plants of the greater Cape floristic region. 1: The core Cape flora. Pretoria: South African National Biodiversity Institute.

    Google Scholar 

  46. Jain, S. K., & Singh, V. P. (2003). Water resources systems planning and management (Vol. 51). Amsterdam: Elsevier.

    Google Scholar 

  47. ESRI. (2016). ArcMAP—How maximum likelihood classification works. https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-maximum-likelihood-classification-works.htm. Retrieved September 5, 2019.

  48. ESRI. (2016). ArcMap—Using the difference button on the image analysis window. http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/using-the-difference-button.htm. Retrieved September 5, 2019.

  49. Sivewright, S. (2017). Dune restoration vs sand stabilisation. https://scientistinlimbo.com/2017/06/01/dune-restoration-vs-sand-stabilisation/. Retrieved September 6, 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Henrico.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henrico, I., Ledwaba, T. & van Zyl, G. Measuring the effect of wind-driven processes on coastal dunes: a study of the Atlantis and Geelbek dune fields along the West Coast of South Africa. Spat. Inf. Res. 28, 569–577 (2020). https://doi.org/10.1007/s41324-020-00317-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-020-00317-x

Keywords

Navigation