Skip to main content
Log in

Analysis of long-term seasonal and annual temperature trends in North Bengal, India

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

In the recent past, scientific modeling of climatic elements, in particular, temperature data has attained considerable importance as it affects many aspects of the environment and also indicates a clear sign of climate change. The temperature warming is mainly associated with the increasing concentration of greenhouse gases triggered by the land use and land cover changes. In the last century, exploitation of forest resource, population influx, and expansion of agricultural land has changed the natural landscape of North Bengal to a great extent. Thus the present study intends to find out long-term changes in maximum and minimum temperature for six northern districts of the state of West Bengal, popularly known as North Bengal. The non-parametric Mann–Kendall test and Theil-Sen’s slope estimator reveals the presence of warming trends in both maximum and minimum temperature. Annual temperature is rising 0.006 °C per year and 0.007 °C per year at most of the districts for the maximum and minimum temperature respectively. However, the seasonal analysis of trend exposes that post-monsoon and winter temperature rise are predominantly contributing to the upward annual trend. The highest increasing trend in maximum and minimum temperature is observed at Malda (0.013 °C per year) in the post-monsoon and winter season respectively. Except the post-monsoon season, the minimum temperature is rising rapidly than maximum temperature across the region. Additionally, Sequential Mann–Kendall test exhibits the periodic fluctuation of trends, which are more prominent in pre-monsoon and monsoon season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. NE states: Assam, Meghalaya, Arunachal Pradesh, Mizoram, Nagaland, Tripura, Manipur, and Sikkim.

  2. C represents temperate, w for dry winter, and b for warm summer.

  3. a represents hot summer.

  4. A represents tropical, w for savannah.

References

  1. Jain, S. K., & Kumar, V. (2012). Trend analysis of rainfall and temperature data for India. Current Science, 102(1), 37–49.

    Google Scholar 

  2. Akinsanola, A. A., & Ogunjobi, K. O. (2014). Analysis of rainfall and temperature variability over Nigeria. Global Journal of Human-Social Science Research, 14(3), 10–28.

    Google Scholar 

  3. IPCC. (2001). Climate change 2001: Synthesis report. In R. T. Watson & The Core Writing Team (Eds.), A contribution of working groups I, II, and III to the third assessment report of the intergovernmental panel on climate change (p. 398). Cambridge: Cambridge University Press.

    Google Scholar 

  4. Yue, S., & Hashino, M. (2003). Long term trends of annual and monthly precipitation in Japan 1. Journal of the American Water Resources Association, 39(3), 587–596.

    Article  Google Scholar 

  5. Arora, M., Goel, N. K., & Singh, P. (2005). Evaluation of temperature trends over India/Evaluation de tendances de température en Inde. Hydrological Sciences Journal, 50(1), 81–93.

    Article  Google Scholar 

  6. Anandhi, A., Srinivas, V. V., Kumar, D. N., & Nanjundiah, R. S. (2009). Role of predictors in downscaling surface temperature to river basin in India for IPCC SRES scenarios using support vector machine. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(4), 583–603.

    Article  Google Scholar 

  7. Hingane, L. S., Kumar, K. R., & Murty, B. V. R. (1985). Long-term trends of surface air temperature in India. Journal of Climatology, 5(5), 521–528.

    Article  Google Scholar 

  8. Srivastava, H. N., Dewan, B. N., Dikshit, S. K., Rao, G. P., Singh, S. S., & Rao, K. R. (1992). Decadal trends in climate over India. Mausam, 43(1), 7–20.

    Google Scholar 

  9. Kumar, K. R., Kumar, K. K., & Pant, G. B. (1994). Diurnal asymmetry of surface temperature trends over India. Geophysical Research Letters, 21(8), 677–680.

    Article  Google Scholar 

  10. Kothawale, D. R., & Rupa Kumar, K. (2005). On the recent changes in surface temperature trends over India. Geophysical Research Letters, 32(18), L18714.

    Article  Google Scholar 

  11. Sonali, P., & Kumar, D. N. (2013). Review of trend detection methods and their application to detect temperature changes in India. Journal of Hydrology, 476, 212–227.

    Article  Google Scholar 

  12. Kothawale, D. R., & Kumar, K. R. (2002). Tropospheric temperature variation over India and links with the Indian summer monsoon: 1971–2000. Mausam, 53(3), 289–308.

    Google Scholar 

  13. Subash, N., & Sikka, A. K. (2014). Trend analysis of rainfall and temperature and its relationship over India. Theoretical and Applied Climatology, 117(3–4), 449–462.

    Article  Google Scholar 

  14. Chatterjee, S., Khan, A., Akbari, H., & Wang, Y. (2016). Monotonic trends in spatio-temporal distribution and concentration of monsoon precipitation (1901–2002), West Bengal, India. Atmospheric Research, 182, 54–75.

    Article  Google Scholar 

  15. Guhathakurta, P., & Rajeevan, M. (2008). Trends in the rainfall pattern over India. International Journal of Climatology, 28(11), 1453–1469.

    Article  Google Scholar 

  16. Basha, G., Kishore, P., Ratnam, M. V., Jayaraman, A., Kouchak, A. A., Ouarda, T. B., et al. (2017). Historical and projected surface temperature over India during the 20th and 21st century. Scientific Reports, 7(1), 2987.

    Article  Google Scholar 

  17. Lahiri Choudhury, D. K. (1975). Report on elephant movement and depredation in Jalpaiguri Division and part of Madarihat Range of Cooch Behar Division in June-July, 1975. Submitted to West Bengal Government, p. 60.

  18. Roy, M. (2010). Habitat use and foraging ecology of the Asian elephant (Elephas maximus) in Buxa Tiger Reserve and adjoining areas of northern West Bengal. Doctoral dissertation, Vidyasagar University, West Bengal, India.

  19. Das, K. (2015). Man elephant conflicts in North Bengal. Teri University. http://www.teriuniversity.ac.in. Accessed 14 September 2018.

  20. Vyas, P., & Sengupta, K. (2014). Human-Leopard conflict in North Bengal, India. Tigerpaper: Regional Quarterly Bulletin on Wildlife and National Parks Management, 41(1), 1–6.

    Google Scholar 

  21. IPCC Third Assessment Report—Climate Change. (2001). Working group I: Technical summary. Geneva: WMO and UNEP.

    Google Scholar 

  22. Annual Report of West Bengal Forest Department, 2014–15. http://www.westbengalforest.gov.in. Accessed 12 September 2018.

  23. Biswas, A. (2011). Prospect of eco tourism in North Bengal a case study of Dooars region Doctoral dissertation, University of Calcutta, West Bengal, India.

  24. Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, 4(2), 439–473.

    Article  Google Scholar 

  25. Dastidar, A. G., Ghosh, S., De, U. K., & Ghosh, S. K. (2010). Statistical analysis of monsoon rainfall distribution over West Bengal, India. Mausam, 61(4), 487–498.

    Google Scholar 

  26. Duhan, D., & Pandey, A. (2013). Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmospheric Research, 122, 136–149.

    Article  Google Scholar 

  27. Duhan, D., Pandey, A., Gahalaut, K. P. S., & Pandey, R. P. (2013). Spatial and temporal variability in maximum, minimum and mean air temperatures at Madhya Pradesh in central India. Comptes Rendus Geoscience, 345(1), 3–21.

    Article  Google Scholar 

  28. Goyal, M. K. (2014). Statistical analysis of long term trends of rainfall during 1901–2002 at Assam, India. Water Resources Management, 28(6), 1501–1515.

    Article  Google Scholar 

  29. Meshram, S. G., Singh, V. P., & Meshram, C. (2017). Long-term trend and variability of precipitation in Chhattisgarh State, India. Theoretical and Applied Climatology, 129(3–4), 729–744.

    Article  Google Scholar 

  30. Ghosh, K. G. (2018). Analysis of rainfall trends and its spatial patterns during the last century over the Gangetic West Bengal, Eastern India. Journal of Geovisualization and Spatial Analysis, 2(2), 15.

    Article  Google Scholar 

  31. Kundu, S., Khare, D., Mondal, A., & Mishra, P. K. (2015). Analysis of spatial and temporal variation in rainfall trend of Madhya Pradesh, India (1901–2011). Environmental Earth Sciences, 73(12), 8197–8216.

    Article  Google Scholar 

  32. Mitchell, T. D., & Jone, P. D. (2005). An improved method of constructing a database of monthly climate observations and associated high resolution grids. International Journal of Climatology, 25(6), 693–712.

    Article  Google Scholar 

  33. Robertson, A. W., Bell, M., Cousin, R., Curtis, A., & Li, S. (2013). Online tools for assessing the climatology and predictability of rainfall and temperature in the Indo-Gangetic Plains based on observed datasets and seasonal forecast models. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Working paper no. 27. Cali, Colombia: https://cgspace.cgiar.org/handle/10568/28992. Accessed 12 September 2018.

  34. Piyoosh, A. K., & Ghosh, S. K. (2016). A comparative assessment of temperature data from different sources for Dehradun, Uttarakhand, India. Journal of Meteorological Research, 30(6), 1019–1032.

    Article  Google Scholar 

  35. Zhang, X., Vincent, L. A., Hogg, W. D., & Niitsoo, A. (2000). Temperature and precipitation trends in Canada during the 20th century. Atmosphere-Ocean, 38(3), 395–429.

    Article  Google Scholar 

  36. Nalley, D., Adamowski, J., Khalil, B., & Ozga-Zielinski, B. (2013). Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform. Atmospheric Research, 132, 375–398.

    Article  Google Scholar 

  37. Karaburun, A., Demirci, A., & Kara, F. (2011). Analysis of spatially distributed annual, seasonal and monthly temperatures in Istanbul from 1975 to 2006. World Applied Science Journal, 12(10), 1662–1675.

    Google Scholar 

  38. Rathore, L. S., Attri, S. D., & Jaswal, A. K. (2013). State level climate change trends in India. Government of India Ministry of Earth Sciences, Earth System Science Organisation, India Meteorological Department.

  39. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245–259.

    Article  Google Scholar 

  40. Kendall, M. G. (1975). Rank correlation methods. London: Charles Griffen.

    Google Scholar 

  41. Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. New York: Wiley.

    Google Scholar 

  42. Thiel, H. (1950). A rank-invariant method of linear and polynomial regression analysis, part 3. Proceedings of Koninalijke Nederlandse Akademie van Weinenschatpen A, 53, 1397–1412.

    Google Scholar 

  43. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389.

    Article  Google Scholar 

  44. Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4), 182–196.

    Article  Google Scholar 

  45. Akinsanola, A. A., & Ogunjobi, K. O. (2017). Recent homogeneity analysis and long-term spatio-temporal rainfall trends in Nigeria. Theoretical and Applied Climatology, 128(1–2), 275–289.

    Article  Google Scholar 

  46. Basistha, A., Arya, D. S., & Goel, N. K. (2009). Analysis of historical changes in rainfall in the Indian Himalayas. International Journal of Climatology, 29(4), 555–572.

    Article  Google Scholar 

  47. von Storch, H., & Navarra, A. (1995). Analysis of climate variability (p. 334). New York: Springer.

    Book  Google Scholar 

  48. Zhang, Q., Sun, P., Singh, V. P., & Chen, X. (2012). Spatial-temporal precipitation changes (1956–2000) and their implications for agriculture in China. Global and Planetary Change, 82, 86–95.

    Article  Google Scholar 

  49. Rao, A. R., Hamed, K. H., & Chen, H. L. (2003). Nonstationarities in hydrologic and environmental time series (p. 362). The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  50. Makokha, G. L., & Shisanya, C. A. (2010). Trends in mean annual minimum and maximum near surface temperature in Nairobi City. Kenya. Advances in Meteorology, 2010, 6.

    Google Scholar 

  51. Sneyers, S. (1990). On the statistical analysis of series of observations. Technical note no. 143, WMO No. 725 415, Secretariat of the World Meteorological Organization, Geneva.

  52. Rai, A., Joshi, M. K., & Pandey, A. C. (2012). Variations in diurnal temperature range over India: under global warming scenario. Journal of Geophysical Research: Atmospheres, 117(D2), 2114.

    Article  Google Scholar 

  53. Mondal, A., Kundu, S., & Mukhopadhyay, A. (2012). Rainfall trend analysis by Mann–Kendall test: A case study of north-eastern part of Cuttack district, Orissa. International Journal of Geology, Earth and Environmental Sciences, 2(1), 70–78.

    Google Scholar 

  54. Srivastava, A. K., Kothawale, D. R., & Rajeevan, M. N. (2017). Variability and long-term changes in surface air temperatures over the Indian subcontinent. In Observed climate variability and change over the Indian Region (pp. 17–35). Singapore: Springer.

  55. Dash, S. K., Jenamani, R. K., Kalsi, S. R., & Panda, S. K. (2007). Some evidence of climate change in twentieth-century India. Climatic Change, 85(3–4), 299–321.

    Article  Google Scholar 

  56. Kothawale, D. R., Kumar, K. K., & Srinivasan, G. (2012). Spatial asymmetry of temperature trends over India and possible role of aerosols. Theoretical and Applied Climatology, 110(1–2), 263–280.

    Article  Google Scholar 

  57. Nair, P. J., Chakraborty, A., Varikoden, H., Francis, P. A., & Kuttippurath, J. (2018). The local and global climate forcings induced inhomogeneity of Indian rainfall. Scientific Reports, 8(1), 6026.

    Article  Google Scholar 

  58. Rao, P. G. (1993). Climatic changes and trends over a major river basin in India. Climate Research, 2, 215–223.

    Article  Google Scholar 

  59. Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423(6939), 528.

    Article  Google Scholar 

  60. Nasri, M., & Modarres, R. (2009). Dry spell trend analysis of Isfahan Province, Iran. International Journal of Climatology, 29(10), 1430–1438.

    Article  Google Scholar 

  61. Rahman, M. A., Yunsheng, L., Sultana, N., & Ongoma, V. (2018). Analysis of reference evapotranspiration (ET 0) trends under climate change in Bangladesh using observed and CMIP5 data sets. Meteorology and Atmospheric Physics, 1–17. https://doi.org/10.1007/s00703-018-0596-3.

Download references

Acknowledgements

The authors would like to express their sincere gratitude to India Water Portal managed by Arghyam and encouraged by National Knowledge Commission, Bangalore, India for providing the district-level meteorological data. The authors are also grateful to the Editor-in-Chief, Dr. Jung-Sup Um and the three anonymous reviewers for their critical review and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritha Datta.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, P., Das, S. Analysis of long-term seasonal and annual temperature trends in North Bengal, India. Spat. Inf. Res. 27, 475–496 (2019). https://doi.org/10.1007/s41324-019-00250-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-019-00250-8

Keywords

Navigation