Skip to main content
Log in

The spatial clustering of dengue disease and risk susceptibility mapping: an approach towards sustainable health management in Kharagpur city, India

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Dengue fever becomes one of the serious vector-borne diseases in the world, particularly in tropical countries. Mosquitoes borne disease transmission are mainly transpired by physical, environmental and socio-economic variables. Therefore, disease mapping is essential for monitoring, prediction, and prevention of dengue. Accordingly, the aims of this research are to find out the dengue outbreak, spatial pattern, understand the factors and construct a risk map to accurately predict and control of dengue. For this purpose, the Kharagpur city of West Bengal has been selected which is frequently encountered with the dengue outbreak. Epidemiological data were collected from the district health department. The spatial scan statistics of the Poisson model and Local Moran’s I is used for the mapping of spatial patterns and concentration of dengue and Monte Carlo hypothesis testing was applied to test the significance of the result. Therefore, multiple logistic regression analysis has been applied with selected parameters to produce a risk map for the entire study area. Finally, this study has proposed suitable site-specific management strategies. However, this study provides an example of disease risk estimation which will be remarkable for spatial analysis of epidemiological research as well as health planning and disease surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Atique, S., Abdul, S. S., Hsu, C., & Chuang, T. (2016). Asian Pacific Journal of Tropical Medicine Meteorological influences on dengue transmission in Pakistan. Asian Pacific Journal of Tropical Medicine, 9(10), 954–961. https://doi.org/10.1016/j.apjtm.2016.07.033.

    Article  Google Scholar 

  2. Dhiman, S., Rabha, B., Yadav, K., Baruah, I., & Veer, V. (2014). Insecticide susceptibility and dengue vector status of wild Stegomyia albopicta in a strategically important area of Assam, India. Parasites and Vectors, 7(1), 295. https://doi.org/10.1186/1756-3305-7-295.

    Article  Google Scholar 

  3. Rogers, D. J., Wilson, A. J., Hay, S. I., & Graham, A. J. (2006). The global distribution of yellow fever and dengue. Advances in Parasitology, 62, 181–220. https://doi.org/10.1016/S0065-308X(05)62006-4.

    Article  Google Scholar 

  4. World Health Organization. (2009). Dengue guidelines for diagnosis, treatment, prevention, and control (pp. 1–160). World Health Organization, Geneva, Switzerland.

  5. Lambrechts, L., Scott, T. W., & Gubler, D. J. (2010). Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Neglected Tropical Diseases, 4(5), e646. https://doi.org/10.1371/journal.pntd.0000646.

    Article  Google Scholar 

  6. Rodriguez-Roche, R., & Gould, E. A. (2013). Understanding the dengue viruses and progress towards their control. BioMed Research International. https://doi.org/10.1155/2013/690835.

  7. Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., et al. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504–507. https://doi.org/10.1038/nature12060.

    Article  Google Scholar 

  8. Stanaway, J. D., Shepard, D. S., Undurraga, E. A., Halasa, Y. A., Coffeng, L. E., Brady, O. J., et al. (2016). The global burden of dengue: An analysis from the Global Burden of Disease Study 2013. The Lancet Infectious Diseases, 16(6), 712–723. https://doi.org/10.1016/S1473-3099(16)00026-8.

    Article  Google Scholar 

  9. Louis, V. R., Phalkey, R., Horstick, O., Ratanawong, P., Wilder-Smith, A., Tozan, Y., et al. (2014). Modeling tools for dengue risk mapping—A systematic review. International Journal of Health Geographics, 13(50), 1–15. https://doi.org/10.1186/1476-072X-13-50.

    Google Scholar 

  10. Rogers, D. J., Suk, J. E., & Semenza, J. C. (2014). Using global maps to predict the risk of dengue in Europe. Acta Tropica, 129(1), 1–14. https://doi.org/10.1016/j.actatropica.2013.08.008.

    Article  Google Scholar 

  11. Palaniyandi, M. (2013). GIS for mapping updates of spatial spread and the ecological reasoning of JE transmission in India (1956–2012). Journal of Geomatices, 7(2), 126–133.

    Google Scholar 

  12. Bhoomiboonchoo, P., Gibbons, R. V., Huang, A., Yoon, I. K., Buddhari, D., Nisalak, A., et al. (2014). The spatial dynamics of dengue virus in Kamphaeng Phet, Thailand. PLoS Neglected Tropical Diseases, 8(9), e3138. https://doi.org/10.1371/journal.pntd.0003138.

    Article  Google Scholar 

  13. Campbell, K. M., Lin, C. D., Iamsirithaworn, S., & Scott, T. W. (2013). The complex relationship between weather and dengue virus transmission in Thailand. American Journal of Tropical Medicine and Hygiene, 89(6), 1066–1080. https://doi.org/10.4269/ajtmh.13-0321.

    Article  Google Scholar 

  14. Campbell, L. P., Luther, C., Moo-Llanes, D., Ramsey, J. M., Danis-Lozano, R., & Peterson, A. T. (2015). Climate change influences on global distributions of dengue and chikungunya virus vectors. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1665), 20140135. https://doi.org/10.1098/rstb.2014.0135.

    Article  Google Scholar 

  15. Fischer, D., Thomas, S. M., Neteler, M., Tjaden, N. B., & Beierkuhnlein, C. (2014). Climatic suitability of Aedes albopictus in Europe referring to climate change projections: Comparison of mechanistic and correlative niche modelling approaches. Eurosurveillance, 19(6), 20696. https://doi.org/10.2807/1560-7917.ES2014.19.6.20696.

    Article  Google Scholar 

  16. Kolivras, K. N. (2010). Changes in dengue risk potential in Hawaii, USA, due to climate variability and change. Climate Research, 42(1), 1–11. https://doi.org/10.3354/cr00861.

    Article  Google Scholar 

  17. Li, Y., Kamara, F., Zhou, G., Puthiyakunnon, S., Li, C., Liu, Y., et al. (2014). Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Neglected Tropical Diseases, 8(11), e3301. https://doi.org/10.1371/journal.pntd.0003301.

    Article  Google Scholar 

  18. Khormi, H. M., Kumar, L., & Elzahrany, R. A. (2011). Modeling spatio-temporal risk changes in the incidence of dengue fever in Saudi Arabia: A geographical information system case study. Geospatial Health, 6(1), 77–84. https://doi.org/10.4081/gh.2011.159.

    Article  Google Scholar 

  19. Jeefoo, P., Tripathi, N. K., & Souris, M. (2011). Spatio-temporal diffusion pattern and hotspot detection of dengue in Chachoengsao province, Thailand. International Journal of Environmental Research and Public Health, 8(1), 51–74. https://doi.org/10.3390/ijerph8010051.

    Article  Google Scholar 

  20. Harrington, L. C., Scott, T. W., Lerdthusnee, K., Coleman, R. C., Costero, A., Clark, G. G., et al. (2005). Dispersal of the dengue vector Aedes aegypti within and between rural communities. The American Journal of Tropical Medicine and Hygiene, 72(2), 209–220. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.506.9955&rep=rep1&type=pdf.

    Article  Google Scholar 

  21. Samuel, P. P., Thenmozhi, V., Nagaraj, J., Kumar, T. D., & Tyagi, B. K. (2014). Dengue vectors prevalence and the related risk factors involved in the transmission of dengue in Thiruvananthapuram district, Kerala, South India. Journal of Vector Borne Diseases, 51(4), 313–319.

    Google Scholar 

  22. National Vector Borne Disease Control Programme, Ministry of Health and Family Welfare Government of India. http://nvbdcp.gov.in. Accessed on December 26th, 2017.

  23. Hanafi-Bojd, A. A., Vatandoost, H., Oshaghi, M. A., Haghdoost, A. A., Shahi, M., Sedaghat, M. M., et al. (2012). Entomological and epidemiological attributes for malaria transmission and implementation of vector control in southern Iran. Acta Tropica, 121(2), 85–92. https://doi.org/10.1016/j.actatropica.2011.04.017.

    Article  Google Scholar 

  24. Adde, A., Roucou, P., Mangeas, M., Ardillon, V., Desenclos, C., Rousset, D., et al. (2016). Predicting dengue fever outbreaks in French Guiana using climate indicators. PLOS Neglected Tropical Diseases, 10(4), 1–16. https://doi.org/10.1371/journal.pntd.0004681.

    Article  Google Scholar 

  25. Patz, J. A., Martens, P., Focks, D. A., & Jetten, T. H. (1998). Dengue fever epidemic potential as projected by general circulation models of global climate change. Environmental Health Perspectives, 106(3), 147–153. https://doi.org/10.1289/ehp.98106147.

    Article  Google Scholar 

  26. Manica, M., Filipponi, F., D’Alessandro, A., Screti, A., Neteler, M., Rosà, R., et al. (2016). Spatial and temporal hot spots of Aedes albopictus abundance inside and outside a South European metropolitan area. PLoS Neglected Tropical Diseases, 10(6), e0004758. https://doi.org/10.1371/journal.pntd.0004758.

    Article  Google Scholar 

  27. Hagenlocher, M., Delmelle, E., Casas, I., & Kienberger, S. (2013). Assessing socioeconomic vulnerability to dengue fever in Cali, Colombia: Statistical vs expert-based modeling. International Journal of Health Geographics, 12, 12-36. https://doi.org/10.1186/1476-072X-.

    Article  Google Scholar 

  28. Vincenti-Gonzalez, M. F., Velasco-salas, Z. I., Lizarazo, F., Amarista, M. A., Sierra, G. M., Comach, G., et al. (2017). Spatial analysis of dengue seroprevalence and modeling of transmission risk factors in a dengue hyperendemic city of Venezuela. PLoS Neglected Tropical Diseases, 11, 1–21. https://doi.org/10.1371/journal.pntd.0005317.

    Article  Google Scholar 

  29. Stevens, K. B., & Pfeiffer, D. U. (2011). Spatial modelling of disease using data- and knowledge-driven approaches. Spatial and Spatio-Temporal Epidemiology, 2(3), 125–133. https://doi.org/10.1016/j.sste.2011.07.007.

    Article  Google Scholar 

  30. Srivastava, A., Nagpal, B. N., Joshi, P. L., Paliwal, J. C., & Dash, A. P. (2009). Identification of malaria hot spots for focused intervention in tribal state of India: A GIS based approach. International Journal of Health Geographics, 8(1), 30. https://doi.org/10.1186/1476-072X-8-30.

    Article  Google Scholar 

  31. Gilruth, P., Kalluri, S., Rogers, D., & Szczur, M. (2007). Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: A review. PLoS Pathogens, 3(10), 1361–1371. https://doi.org/10.1371/journal.ppat.0030116.

    Google Scholar 

  32. Martínez-Bello, D. A., López-Quílez, A., & Torres Prieto, A. (2017). Relative risk estimation of dengue disease at small spatial scale. International Journal of Health Geographics, 16(1), 1–15. https://doi.org/10.1186/s12942-017-0104-x.

    Article  Google Scholar 

  33. Oliveira, F. L. P., Cançado, A. L. F., de Souza, G., Moreira, G. J. P., & Kulldorff, M. (2018). Border analysis for spatial clusters. International Journal of Health Geographics, 17(1), 1–10. https://doi.org/10.1186/s12942-018-0124-1.

    Article  Google Scholar 

  34. Lawson, A. (2001). Statistical methods in spatial epidemiology. Chichester: Wiley.

    Google Scholar 

  35. Pfeiffer, D. U., Robinson, T., Stevenson, M., Stevens, K., Rogers, D., & Clement, A. (2008). Spatial analysis in epidemiology. Oxford Biology, 19(2), 148–149. https://doi.org/10.1073/pnas.0703993104. (Paperback).

    Google Scholar 

  36. Kulldorff, M. (1999). An isotonic spatial scan statistic for geographical disease surveillance. Journal of the National Institute of Public Health, 48(2), 94–101.

    Google Scholar 

  37. Khalid, B., & Ghaffar, A. (2015). Environmental risk factors and hotspot analysis of dengue distribution in Pakistan. International Journal of Biometeorology, 59(11), 1721–1746. https://doi.org/10.1007/s00484-015-0982-1.

    Article  Google Scholar 

  38. Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x.

    Article  Google Scholar 

  39. Hinman, S. E., Blackburn, J. K., & Curtis, A. (2006). Spatial and temporal structure of typhoid outbreaks in Washington, D.C., 1906-1909: Evaluating local clustering with the Gi* statistic. International Journal of Health Geographics, 5, 13. https://doi.org/10.1186/1476-072X-5-13.

    Article  Google Scholar 

  40. Duncan, E. W., White, N. M., & Mengersen, K. (2017). Spatial smoothing in Bayesian models: A comparison of weights matrix specifications and their impact on inference. International Journal of Health Geographics, 16(47), 1–16. https://doi.org/10.1186/s12942017-0120-x.

    Google Scholar 

  41. Chief Medical Officer of the Health (CMOH), Paschim Medinipur (2017) under Department of Health and Family welfare, Government of West Bengal. Collected dengue report as hard copy from Kharagpur Municipality on 22nd December, 2017.

  42. Bowman, L. R., Runge-Ranzinger, S., & McCall, P. J. (2014). Assessing the relationship between vector indices and dengue transmission: A systematic review of the evidence. PLoS Neglected Tropical Diseases, 8(5), e2848. https://doi.org/10.1371/journal.pntd.0002848.

    Article  Google Scholar 

  43. Census of India, West Bengal State. (2011). Office of the Registrar General and Census Commissioner, India 2/A, Man Singh Road, New Delhi, 110011, India. www.indiacensus.gov.in. Accessed 26 Nov 2018.

  44. Wan-Norafikah, O., Nazni, W. A., Noramiza, S., Shafa’ar-Ko’Ohar, S., Heah, S. K., Nor-Azlina, A. H., et al. (2012). Distribution of Aedes mosquitoes in three selected localities in Malaysia. Sains Malaysiana, 41(10), 1309–1313.

    Google Scholar 

  45. Cheong, Y. L., Leitao, P. J., & Lakes, T. (2014). Assessment of land use factors associated with dengue cases in Malaysia using Boosted Regression Trees. Spatial and Spatio-Temporal Epidemiology, 10, 75–84. https://doi.org/10.1016/j.sste.2014.05.002.

    Article  Google Scholar 

  46. Richards, S. L., Ponnusamy, L., Unnasch, T. R., Hassan, H. K., Apperson, C. S., Apperson, C. S., et al. (2006). Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in relation to availability of human and domestic animals in suburban landscapes of central North Carolina. Journal of Medical Entomology, 43(3), 543–551. https://doi.org/10.1093/jmedent/43.3.543.

    Article  Google Scholar 

  47. Esri, R. (2012). ArcGIS desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.

    Google Scholar 

  48. Tango, T., & Takahashi, K. (2005). A flexibly shaped spatial scan statistic for detecting clusters. International Journal of Health Geographics, 4, 11. https://doi.org/10.1186/1476-072X-4-11.

    Article  Google Scholar 

  49. Huang, L., Tiwari, R. C., Zou, Z., Kulldorff, M., & Feuer, E. J. (2009). Weighted normal spatial scan statistic for heterogeneous population data. Journal of the American Statistical Association, 104(487), 886–898. https://doi.org/10.1198/jasa.2009.ap07613.

    Article  Google Scholar 

  50. Prates, M. O., Kulldorff, M., & Assunção, R. M. (2014). Relative risk estimates from spatial and space-time scan statistics: Are they biased? Statistics in Medicine, 33(15), 2634–2644. https://doi.org/10.1002/sim.6143.

    Article  Google Scholar 

  51. Wakefield, J., & Elliott, P. (1999). Issues in the statistical analysis of small area health data. Statistics in Medicine, 18, 2377–2399.

    Article  Google Scholar 

  52. Mugglin, A. S., Carlin, B. P., Zhu, L., & Conlon, E. (1999). Bayesian areal interpolation, estimation, and smoothing: An inferential approach for geographic information systems. Environment and Planning A, 31(8), 1337–1352. https://doi.org/10.1068/a311337.

    Article  Google Scholar 

  53. Kulldorff, B. M. (2015). SaTScan user guide V9.5 (pp. 1–113).

  54. Bhunia, G. S., Siddiqui, N. A., Shit, P. K., Chatterjee, N., & Sinha, S. K. (2016). Spatial clustering of Plasmodium falciparum in Bihar (India) from 2007 to 2015. Spatial Information Research, 24(6), 639–648.

    Article  Google Scholar 

  55. Méndez-Lázaro, P., Muller-Karger, F. E., Otis, D., McCarthy, M. J., & Peña-Orellana, M. (2014). Assessing climate variability effects on dengue incidence in San Juan, Puerto Rico. International Journal of Environmental Research and Public Health, 11(9), 9409–9428. https://doi.org/10.3390/ijerph110909409.

    Article  Google Scholar 

  56. Akter, R., Naish, S., Hu, W., & Tong, S. (2017). Socio-demographic, ecological factors and dengue infection trends in Australia. PLoS ONE, 12(10), 1–18. https://doi.org/10.1371/journal.pone.0185551.

    Article  Google Scholar 

  57. Chu, H. J., Chan, T. C., & Jao, F. J. (2013). GIS-aided planning of insecticide spraying to control dengue transmission. International Journal of Health Geographics, 12, 42. https://doi.org/10.1186/1476-072X-12-42.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the students of post-graduate research groups of the year 2017 for cooperating field survey and especially thanks to the Chairman of Kharagpur Municipality for providing the epidemiological data. The authors also thanks to Sanchita Barman, Ravi Kumar Shaw, Sathi Yasmin and Apurba Dinda for their contribution in every aspect. The authors also thanks to UGC (New Delhi, India) for providing research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Dinda, S., Das Chatterjee, N. et al. The spatial clustering of dengue disease and risk susceptibility mapping: an approach towards sustainable health management in Kharagpur city, India. Spat. Inf. Res. 27, 187–204 (2019). https://doi.org/10.1007/s41324-018-0224-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-018-0224-9

Keywords

Navigation