Skip to main content
Log in

Exploring landslide susceptible zones by analytic hierarchy process (AHP) for the Gish River Basin, West Bengal, India

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Landslide is a major threat in the Darjeeling Himalaya within sub-humid climate. Hence proper identification of landslide susceptible zone (LSZ) is very much essential. In this case a multi criterion evaluation approach is applied using thirteen selected indicators. The parameters are categorized into five categories viz. anthropogenic factor, surface causal factor, lithological causal factor, triggering factor and protective factor. Weighted composite model is prepared adopting weighting base as Analytic Hierarchy Process. The obtained result shows that near about 19.92 sq. km (approximately 7.52%) area within the basin is highly susceptible for landslides. High drainage density (avg. 4.31 km/sq. km), relatively steeper slope (>10°) accelerate this process. Beside the main landslide susceptibility layers five separate models of five causal factor groups are prepared and correlated with final LSZ for understanding the priority cluster. Lithological factors cluster appears as a dominant factor group (correlation value 0.95). This LSZ model is also validated by frequency as well as areal density of historical landslides. Beside this, the validation by ROC curve shows 84.00% area under the curve. So, the model can be treated as relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moradi, M., Bazyar, M. H., & Mohammadi, Z. (2012). GIS-based landslide susceptibility mapping by AHP method, a case study, Dena City, Iran. Journal of Basic and Applied Scientific Research, 2(7), 6715–6723.

    Google Scholar 

  2. Yilmaz, C., Topal, T., & Suzen, M. L. (2011). GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey). Environmental Earth Sciences, 2012(65), 2161–2178.

    Google Scholar 

  3. Eshghabad, S. M., Solaimani, K., & Omidvar, E. (2012). Landslide susceptibility mapping using multiple regression and GIS tools in Tajan Basin, North of Iran. Environment and Natural Resources Research, 2(3), 43–51.

    Google Scholar 

  4. Kumar, R., & Anbalagan, R. (2015). Landslide susceptibility zonation of Tehri reservoir rim region using binary logistic regression model. Current Science, 108(9), 1662–1672.

    Google Scholar 

  5. Pradhan, B., Sezer, E. A., Gokceoglu, C., & Buchroithner, M. F. (2010). Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia). IEEE Transactions on Geoscience and Remote Sensing, 48(12), 4164–4177.

    Article  Google Scholar 

  6. Pascale, S., Parisi, S., Mancini, A., & Schiattarella, M. (2013). Landslide susceptibility mapping using artificial neural network in the urban area of Senise and San Costantino Albanese (Basilicata, Southern Italy). In: ICCSA, part IV, LNCS 7974, pp. 473–488.

  7. Saaty, T. L. (1980). The analytical hierarchy process. New York: McGraw Hill.

    Google Scholar 

  8. Ayalew, L., Yamagishi, H., Marui, H., & Kanno, T. (2005). Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Engineering Geology, 81, 432–445.

    Article  Google Scholar 

  9. Official Website of Government of Darjeeling. www.darjeeling.gov.in/geography.html.

  10. Rai, P. K., Mohan, K., & Kumra, V. K. (2014). Landslide hazard and its mapping using remote sensing and GIS. Journal of Scientific Research, Banaras Hindu University, Varanasi, 58: 1.

  11. Pal, S. (2016). Identification of soil erosion vulnerable areas in Chandrabhaga river basin: A multi-criteria decision approach. Modeling Earth Systems and Environment, 2(5), 1–11.

    Google Scholar 

  12. Achour, Y., Boumezbeur, A., Hadji, R., Chouabbi, A., Cavaleiro, V., & Bendaoud, E. A. (2017). Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arabian Journal of Geosciences, 10, 1–16. doi:10.1007/s12517-017-2980-6.

    Article  Google Scholar 

  13. Eastman, J. R. (2006). Idrisiandes: tutorial, clark labs. Worcester: Clark University.

    Google Scholar 

  14. Elmahdy, S. I., Marghany, M. M., & Mohamed, M. M. (2014). Application of a weighted spatial probability model in GIS to analyse landslides in Penang Island, Malaysia. Geomatics, Natural Hazards and Risk, 7:1, Taylor and Francis Group. pp. 353–356. doi: 10.1080/19475705.2014.904825.

  15. Paul, P. K., & Das, S. (2014). Landslide susceptibility evaluation of GIT watershed of Kalimpong subdivision, India using information value method. International Journal of Economic and Environment Geology, 5(2), 18–24.

    Google Scholar 

  16. Chauhan, S., Sharma, M., Arora, M. K., & Gupta, N. K. (2010). Landslide susceptibility zonation through ratings derived from artificial neural network. International Journal of Applied Earth Observation and Geoinformation, 12, 340–350.

    Article  Google Scholar 

  17. Gokceoglu, C., & Aksoy, H. (1996). Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. EngGeol, 44, 147–161.

    Google Scholar 

  18. Mandal, S., & Maiti, R. (2014). Role of lithological composition and lineaments in landsliding: A case study of Shivkhola watershed, Darjeeling Himalaya. International Journal of Geology, Earth and Environmental Sciences, 4(1), 126–132.

    Google Scholar 

  19. Biswas, S. S., & Pal, R. (2016). Causes of landslides in Darjeeling Himalayas during June–July, 2015. Journal of Geography and Natural Disasters, 6, 173. doi:10.4172/2167-0587.1000173.

    Article  Google Scholar 

  20. Dahal, R. K., & Hasegawa, S. (2008). Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology, 100, 429–443. doi:10.1016/j.geomorph.2008.01.014.

    Article  Google Scholar 

  21. Basu, T. & Pal, S. (2017). Identification of landslide susceptibility zones in Gish River basin, West Bengal, India. Georisk, Taylor & Francis. pp. 1–16. DOI: 10.1080/17499518.2017.1343482.

  22. Arbanas, Z., & Dugonjić, S. (2010). Landslide risk increasing caused by highway construction. Researchgate, pp. 333-342.

  23. Mandal, B., & Mandal, S. (2016). Assessment of mountain slope instability in the Lish River basin of Eastern Darjeeling Himalaya using frequency ratio model (FRM). Modeling Earth Systems and Environment, 2, 1–14.

    Article  Google Scholar 

  24. Rasyid, A. R., Bhandary, N. P., & Ryuichi, Y. (2016). Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenvironmental Disasters, 3(19), 12.

    Google Scholar 

  25. Ansari, Md A, Khan, P. K., Tiwari, V. M., & Banerjee, J. (2014). Gravity anomalies, flexure, and deformation of the converging Indian lithosphere in Nepal and Sikkim-Darjeeling Himalayas. International Journal of Earth Sciences (GeolRundsch), 103, 1681–1697.

    Article  Google Scholar 

  26. Ghosh, K. G., & Saha, S. (2015). Identification of soil erosion susceptible areas in Hinglo River Basin, Eastern India based on geo-statistics. Universal Journal of Environmental Research and Technology, 5(3), 4–5.

    Google Scholar 

  27. Hadley, R. F., & Schumm, S. A. (1961). Sediment sources and drainage basin characteristics in upper Cheyenne River Basin. US geol survey water supply paper 1531-B:198.

  28. Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channelnetworks. In V. T. Chow (Ed.), Handbook of applied hydrology (pp. 411–476). New York: McGraw-Hill.

    Google Scholar 

  29. Nag, S. K. (1998). Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal. Journal of the Indian Society of Remote Sensing, 26(1), 69–76.

    Article  Google Scholar 

  30. Simon, N., Roslee, R., Marto, N. L., Akhir, J. M., Rafek, A. G., & Lai, G. T. (2014). Lineaments and their association with landslide occurrences along the Ranau-Tambunan Road, Sabah. EJGE, 19, 645–655.

    Google Scholar 

  31. Kitutu, M. G., Muwanga, A., Poesen, J., & Deckers, J. A. (2009). Influence of soil properties on landslide occurrences in Bududa district, Eastern Uganda. African Journal of Agricultural Research, 4(7), 611–620.

    Google Scholar 

  32. Reichenbach, P., Busca, C., Mondini, A. C., & Rossi, M. (2014). The influence of land use change on landslide susceptibility zonation: The Briga catchment test site (Messina, Italy). Environmental Management, 54, 1372–1384.

    Article  Google Scholar 

  33. Iwahashi, J., Okatani, T., Nakano, T., Koarai, M., & Otoi, K. (2014). Landslide susceptibility analysis by terrain and vegetation attributes derived from pre-event LiDAR data: A case study of granitic mountain slopes in Hofu, Japan. INTERPRAEVENT2014 in the Pacific Rim November 25–28, 2014, in Nara, Japan.

  34. Kamp, U., Growley, B. J., Khattak, G. A., & Owen, L. A. (2008). GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology, 101, 631–642.

    Article  Google Scholar 

  35. Omosanya, K. O., Mosuro, G. O., Laniyan, T. A., & Ogunleye, D. (2012). Prediction of gravity anomaly from calculated densities of rocks. Advances in Applied Science Research, 3(4), 2059–2068.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tirthankar Basu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9082 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, T., Pal, S. Exploring landslide susceptible zones by analytic hierarchy process (AHP) for the Gish River Basin, West Bengal, India. Spat. Inf. Res. 25, 665–675 (2017). https://doi.org/10.1007/s41324-017-0134-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-017-0134-2

Keywords

Navigation