Skip to main content

Research on Robotic Fish Propelled by Oscillating Pectoral Fins

  • Chapter
  • First Online:
Robot Fish

Abstract

Swimming mode utilizing oscillating pectoral fins possess characteristics of high efficiency, high stability, high maneuverability, and higher swimming velocity compared with other swimming modes of fish. Broad application prospect and important research value are shown by robotic fish propelled by oscillating pectoral fins. The research on bionic fish of this kind has become a hot pot. In this chapter, structure characteristics and pectoral fin motion deformation during oscillation of the nature sample, cownose ray, are analyzed. Main structure parameters of the sample cownose ray and simple mathematical model of oscillating movement of the pectoral fin are obtained. Finally, a robotic fish propelled by oscillating pectoral foils featuring with organic combination of form bionic and function bionic is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuru X, Pengchao L (2011) Development trend of underwater robot. Chin J Nat 33(3):125–132

    Google Scholar 

  2. Xuelun P (2004) Research state and development trend of underwater robot. Robot Tech Appl 4:43–47

    Google Scholar 

  3. Roper DT, Sharma S, Sutton R et al (2011) A review of developments towards biologically inspired propulsion systems for autonomous underwater vehicles. Proc Inst Mech Eng Part M J Eng Marit Environ 225(2):77–96

    Google Scholar 

  4. Naeem W, Sutton R, Ahmad SM et al (2003) A review of guidance laws applicable to unmanned underwater vehicles. J Navig 56(1):15–29

    Article  Google Scholar 

  5. Yuh J (2000) Design and control of autonomous underwater robots: a survey. Auton Robot 8(1):7–24

    Article  Google Scholar 

  6. Triantafyllou MS, Techet AH, Hover FS (2004) Review of experimental work in biomimetic foils. IEEE J Ocean Eng 29(3):585–594

    Article  Google Scholar 

  7. Bandyopadhyay PR (2005) Trends in biorobotic autonomous undersea vehicles. IEEE J Ocean Eng 30(1):109–139

    Article  Google Scholar 

  8. MacIver MA, Fontaine E, Burdick JW (2004) Designing future underwater vehicles: principles and mechanisms of the weakly electric fish. IEEE J Ocean Eng 29(3):651–659

    Article  Google Scholar 

  9. Altringham JD, Ellerby DJ (1999) Fish swimming: patterns in muscle function. J Exp Biol 202(23):3397–3403

    Google Scholar 

  10. Lauder GV, Drucker EG (2002) Forces, fishes, and fluids: hydrodynamic mechanisms of aquatic locomotion. News Physiol Sci 17:235–240

    Google Scholar 

  11. Blake RW (1983) Swimming in the electric eels and knifefishes. Can J Zool 61(6):1432–1441

    Article  Google Scholar 

  12. Yueri C, Shusheng B (2011) Research advances of bionic fish propelled by oscillating paired pectoral foils. J Mech Eng 47(19):30–37

    Article  Google Scholar 

  13. Blake RW (2004) Fish functional design and swimming performance. J Fish Biol 65(5):1193–1222

    Article  Google Scholar 

  14. Sfakiotakis M, Lane DM, Davies JBC (1999) Review of fish swimming modes for aquatic locomotion. IEEE J Ocean Eng 24(2):237–252

    Article  Google Scholar 

  15. Triantafyllou MS, Triantafyllou GS, Yue D (2000) Hydrodynamics of fishlike swimming. Annu Rev Fluid Mech 32(1):33–53

    Article  MathSciNet  Google Scholar 

  16. Colgate JE, Lynch KM (2004) Mechanics and control of swimming: a review. IEEE J Ocean Eng 29(3):660–673

    Article  Google Scholar 

  17. Bioleau R, Fan L, Moore T (2002) Mechanization of rajiform swimming motion: the making of Robo-ray. Engineering Physics Project Laboratory, University of British Columbia, Vancouver

    Google Scholar 

  18. Clark RP, Smits AJ (2006) Thrust production and wake structure of a batoid-inspired oscillating fin. J Fluid Mech 562:415–429

    Article  MATH  Google Scholar 

  19. Brower T (2006) Design of a manta ray inspired underwater propulsive mechanism for long range, low power operation. Tufts University

    Google Scholar 

  20. Moored KW, Taylor SA, Bliss TK et al (2006) Optimization of a tensegrity wing for biomimetic applications. In: Proceedings of 45th IEEE conference on decision and control, San Diego, pp 2288–2293

    Google Scholar 

  21. Jun G, Shusheng B, Ji L, Yueri Cai (2011) Design and hydrodynamic experiments on robotic fish with oscillation pectoral fins. J Beijing Univ Aeronaut Astronaut 37(3):344–350

    Google Scholar 

  22. Zheng L, Bi S, Cai Y et al (2010) Design and optimization of a robotic fish mimicking cownose ray. In: IEEE international conference on robotics and biomimetics, ROBIO 2010, Tianjin. IEEE computer society, pp 1075–1080

    Google Scholar 

  23. Nakamura T, Yamamoto I (2009) Research on fluid analysis simulator for elastic oscillating fin of biomimetic underwater robots. In: ICROS-SICE international joint conference 2009. Fukuoka international congress center, Japan, pp 3886–3889

    Google Scholar 

  24. http://www.imae-kagaku.com/mech.htm. Accessed 10 Oct 2014

  25. Xu Y, Zong G, Bi S et al (2007) Initial development of a flapping propelled unmanned underwater vehicle (UUV). In: Proceedings of the 2007 IEEE international conference on robotics and biomimetics, Sanya, pp 524–529

    Google Scholar 

  26. Gao J, Bi S, Xu Y et al (2007) Development and design of a robotic manta ray featuring flexible pectoral fins. In: IEEE international conference on robotics and biomimetics, Sanya, pp 519–523

    Google Scholar 

  27. Cai YR, Bi SS, Zheng LC (2010) Design and experiments of a robotic fish imitating cownose ray. J Bionic Eng 7(2):120–126

    Article  Google Scholar 

  28. Wang Z, Wang Y, Li J et al (2009) A micro biomimetic manta ray robot fish actuated by SMA. In: IEEE international conference on robotics and biomimetics, Guilin, pp 1809–1813

    Google Scholar 

  29. Elizabeth P (2011) Bio-inspired engineering: manta machines. Science 232:1028–1029

    Google Scholar 

  30. http://www.festo.com/cms/en_corp/9786.htm. Accessed 10 Oct 2014

  31. Yang SB, Qiu J, Han X (2009) Kinematics modeling and experiments of pectoral oscillating propulsion robotic fish. J Bionic Eng 6:174–179

    Article  Google Scholar 

  32. Zhou CL, Low KH (2010) Better endurance and load capacity: an improved design of manta ray robot (RoMan-II). J Bionic Eng 7(Supplement 1):137–144

    Article  Google Scholar 

  33. Russo RS (2012) Biomechanical modeling of ray pectoral fins to inform the design of AUV propulsion systems. University of Virginia, Charlottesville

    Google Scholar 

  34. Suzumori K, Endo S, Kanda T, Kato N et al (2007) A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: IEEE international conference on robotics and automation, Angelicum University, Rome, pp 4975–4980

    Google Scholar 

  35. Ando Y, Kato N, Suzuki H, Suzumori K (2006) Elastic pectoral fin actuators for biomimetic underwater vehicles. In: Proceedings of the sixteenth international offshore and polar engineering conference, San Francisco. ISOPE, Cupertino, pp 260–270

    Google Scholar 

  36. Alben S, Madden PG, Lauder GV (2007) The mechanics of active fin-shape control in ray-finned fishes. J Royal Soc Interf V4:243–256

    Google Scholar 

  37. Walker JA (2000) Does a rigid body limit maneuverability? J Exp Biol V203:3391–3396

    Google Scholar 

  38. Deyuan Z, Jun C, Xiang L et al (2010) Bioforming methods of bionic manufacturing. J Mech Eng 46(5):88–92

    Google Scholar 

  39. Cooper AJ, Carpenter PW (1997) The stability of rotating disc boundary-layer flow over a compliant wall. Part I. Types I and II instabilities. J Fluid Mech 350:231–259

    Google Scholar 

  40. Heine C (1992) Mechanics of flapping fin locomotion in the cownose ray, Rhinoptera bonasus (elasmobranchii, myliobatidae). Duke University

    Google Scholar 

  41. Summers AP, Koob-Emunds MM, Kajiura SM et al (2003) A novel fibrocartilaginous tendon from an elasmobranch fish (Rhinoptera bonasus). Cell Tissue Res 312(2):221–227

    Google Scholar 

  42. Schaefer JT, Summers AP (2005) Batoid wing skeletal structure: novel morphologies, mechanical implications, and phylogenetic patterns. J Morphol 264(3):298–313

    Google Scholar 

  43. Rosenberger LJ, Westneat MW (1999) Functional morphology of undulatory pectoral fin locomotion in the stingray Taeniura lymma (Chondrichthyes: Dasyatidae). J Exp Biol 202(24):3523–3539

    Google Scholar 

  44. Rosenberger LJ (2001) Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J Exp Biol 204(2):379–394

    Google Scholar 

  45. Cai YR, Bi SS, Zheng LC (2012) Design optimization of a bionic fish with multi-joint fin rays. Advanced Robotics 26(1–2):177–196

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shusheng Bi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cai, Y., Bi, S., Ma, H. (2015). Research on Robotic Fish Propelled by Oscillating Pectoral Fins. In: Du, R., Li, Z., Youcef-Toumi, K., Valdivia y Alvarado, P. (eds) Robot Fish. Springer Tracts in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46870-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46870-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46869-2

  • Online ISBN: 978-3-662-46870-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics