Skip to main content
Log in

Prediction of compaction parameters of compacted soil using LSSVM, LSTM, LSBoostRF, and ANN

  • Technical Paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

The present research introduces a robust approach for predicting the maximum dry density (MDD) and optimum moisture content (OMC) of compacted soil by comparing models based on least-square support vector machine (LSSVM), long short-term memory (LSTM), least-square boost random forest (LSBoostRF), and artificial neural network (ANN) approaches. For this purpose, the database of 243 soil samples (190 training + 53 testing) has been used to train and test the developed models. For the measurement of the training and testing performance, the root-mean-square error (RMSE), mean absolute error (MAE), correlation coefficient (R), variance accounted for (VAF), performance index (PI), a20 index, index of agreement (IOA), and index of scatter (IOS), statistical parameters have been utilized. The performance comparison demonstrates that models based on the LSSVM approach have gained the highest performance in predicting MDD (RMSE = 0.0171 g/cc, R = 0.9920, MAE = 0.0125 g/cc, VAF = 98.41, PI = 1.95, a20-index = 100.00, IOA = 0.9446, and IOS = 0.0093) and OMC (RMSE = 0.6070%, R = 0.9936, MAE = 0.5294%, VAF = 98.49, PI = 1.37, a20-index = 100.00, IOA = 0.9357, and IOS = 0.0450) of compacted soil than LSTM, LSBoostRF, and ANN models. This study also reports that the Adam-optimized LSTM model performs better than the RMSProp LSTM model in predicting the compaction parameters of soil. Also, the number of leaves affects the performance of LSBoostRF models. The performance comparison of ANN models depicts that selecting suitable hyperparameters such as backpropagation algorithm, number of hidden layers, and neurons is necessary to achieve better prediction. However, Levenberg–Marquardt algorithm-based ANN model (single hidden layer interconnected with 5/10 neurons) has predicted compaction parameters better than other ANN models. The score analysis has been performed to confirm that models based on the LSSVM approach are the best architecture model for predicting MDD and OMC. The Monte Carlo sensitivity analysis demonstrates that fine content, sand content, liquid limit, and plasticity index are the most influencing parameters in predicting the compaction parameters of soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data would remain confidential and shared by the corresponding author at the request.

Abbreviations

\({D}_{10}\) :

Particle size at 10% finer

\({D}_{U}\) :

Unit density

AI:

Artificial intelligence

ANNs:

Artificial neural networks

Apt:

Asphalt

BFG:

BFG quasi-Newton

BL:

Blended learning

C:

Clay content

CC:

Correlation coefficient

Ce:

Cement

CFB_NN:

Cascade forward backpropagation neural network

CI:

Confidence interval

Cu:

Coefficient of uniformity

DL:

Deep learning

E:

Compaction energy

ELM:

Extreme learning machines

FA:

Fly ash

FC:

Fine content

FMS:

Fineness modulus

G:

Gravel content

GD:

Gradient descent

GDA:

Gradient descent with adaptive learning

GDM:

Gradient descent with momentum

GEP:

Gene expression programming

GPs:

Gradational parameters

HL:

Hybrid learning

HLi:

Hydrated lime

Li:

Lime

LL:

Liquid limit

LM:

Levenberg–Marquardt

LS:

Linear shrinkage

LSBoostRF:

Least-square boosting random forest

LSSVM:

Least-square support vector machine

LSTM:

Long short-term memory

M:

Silt content

MAE:

Mean absolute error

MARS:

Multivariate adaptive regression splines

MDD:

Maximum dry density

MDDs:

Standard proctor test maximum dry density

ML:

Machine learning

MLP_NN:

Multilayer perceptron neural network

MRA:

Multiple regression analysis

OMC:

Optimum moisture content

OMCs:

Standard proctor test optimum moisture content

PI:

Plasticity index

PL:

Plastic limit

Pz:

Pozzolans

R :

Correlation coefficient/performance

R2 :

Coefficient of determination

RA:

Regression analysis

RBF_NN:

Radial basis function neural network

RMSE:

Root-mean-square error

S/ SC:

Sand content

SCG:

Scaled conjugate gradient

SG:

Specific gravity

SRA:

Simple regression analysis

ST:

Statistical model

ST + ANN:

Statistical-based artificial neural network

STI:

Soil type index

SVM:

Support vector machine

References

  1. Arora KR (2004) Soil mechanics and foundation engineering. Standard Publisher Distributors, New Delhi

    Google Scholar 

  2. Sinha SK, Wang MC (2008) Artificial neural network prediction models for soil compaction and permeability. Geotech Geol Eng 26(1):47–64. https://doi.org/10.1007/s10706-007-9146-3

    Article  Google Scholar 

  3. Günaydın OJEG (2009) Estimation of soil compaction parameters by using statistical analyses and artificial neural networks. Environ Geol 57(1):203–215. https://doi.org/10.1007/s00254-008-1300-6

    Article  Google Scholar 

  4. Hussain A, Atalar C (2020) Estimation of compaction characteristics of soils using Atterberg limits. In: IOP conference series: materials science and engineering, IOP Publishing, vol 800, no 1, p 012024. Mar 2020. https://doi.org/10.1088/1757-899X/800/1/012024

  5. Jayan J, Sankar N (2015) Prediction of compaction parameters of soils using artificial neural network. Asian J Eng Technol 3(4):368–375

    Google Scholar 

  6. Shrivastava K, Jain PK, Azad M (2016) Prediction of Compaction Parameters using Regression and ANN Tools. Int J Sci Res Dev 3(11):2321–2613

    Google Scholar 

  7. Taha OME, Majeed ZH, Ahmed SM (2018) Artificial neural network prediction models for maximum dry density and optimum moisture content of stabilized soils. Transp Infrastruct Geotechnol 5(2):146–168. https://doi.org/10.1007/s40515-018-0053-2

    Article  Google Scholar 

  8. Khuntia S, Mujtaba H, Patra C, Farooq K, Sivakugan N, Das BM (2015) Prediction of compaction parameters of coarse grained soil using multivariate adaptive regression splines (MARS). Int J Geotech Eng 9(1):79–88. https://doi.org/10.1179/1939787914Y.0000000061

    Article  Google Scholar 

  9. Hohn AV, Leme RF, Moura TE, Ayala GRL (2022) Empirical models to predict compaction parameters for soils in the state of Ceará, Northeastern Brazil. Ingeniería e Investig. https://doi.org/10.15446/ing.investig.v42n1.86328

    Article  Google Scholar 

  10. Taffese WZ, Abegaz KA (2022) Prediction of compaction and strength properties of amended soil using machine learning. Buildings 12(5):613. https://doi.org/10.3390/buildings12050613

    Article  Google Scholar 

  11. Arama ZA, Gençdal HB (2022) Simple regression models to estimate the standard and modified proctor characteristics of specific compacted fine-grained soils. In: Proceedings of the 7th world congress on civil, structural, and environmental engineering, pp 1–9 https://doi.org/10.11159/icgre22.232

  12. Yousif AA, Mohamed IA (2022) Prediction of compaction parameters from soil index properties case study: dam complex of Upper Atbara Project. Am J Pure Appl Sci 4(1):01–09. https://doi.org/10.34104/ajpab.022.01009

    Article  Google Scholar 

  13. Soltani A, Azimi M, O’Kelly BC (2021) Modeling the compaction characteristics of fine-grained soils blended with tire-derived aggregates. Sustainability 13(14):7737. https://doi.org/10.3390/su13147737

    Article  Google Scholar 

  14. Othman K (2021) Deep neural network models for the prediction of the aggregate base course compaction parameters. Designs 5(4):78. https://doi.org/10.3390/designs5040078

    Article  Google Scholar 

  15. Jalal FE, Xu Y, Iqbal M, Jamhiri B, Javed MF (2021) Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms. Transp Geotech 30:100608. https://doi.org/10.1016/j.trgeo.2021.100608

    Article  Google Scholar 

  16. Kurnaz TF, Kaya Y (2020) The performance comparison of the soft computing methods on the prediction of soil compaction parameters. Arab J Geosci 13(4):1–13. https://doi.org/10.1007/s12517-020-5171-9

    Article  Google Scholar 

  17. Ratnam UV, Prasad KN (2019) Prediction of compaction and compressibility characteristics of compacted soils. Int J Appl Eng Res 14(3):621–632

    Google Scholar 

  18. Hasnat A, Hasan MM, Islam MR, Alim MA (2019) Prediction of compaction parameters of soil using support vector regression. Curr Trends Civ Struct Eng 4(1):1–7. https://doi.org/10.33552/CTCSE.2019.04.000580

    Article  Google Scholar 

  19. Karimpour-Fard M, Machado SL, Falamaki A, Carvalho MF, Tizpa P (2019) Prediction of compaction characteristics of soils from index test’s results. Iran J Sci Technol Trans Civ Eng 43(1):231–248. https://doi.org/10.1007/s40996-018-0161-9

    Article  Google Scholar 

  20. Lubis AS, Muis ZA, Hastuty IP, Siregar IM (2018) Estimation of compaction parameters based on soil classification. In: IOP conference series: materials science and engineering. IOP Publishing, vol 306, no 1, pp 012005. Feb 2018 https://doi.org/10.1088/1757-899X/306/1/012005

  21. Khalid U, Rehman ZU (2018) Evaluation of compaction parameters of fine-grained soils using standard and modified efforts. Int J Geo Eng 9(1):1–17. https://doi.org/10.1186/s40703-018-0083-1

    Article  Google Scholar 

  22. Mujtaba H, Farooq K, Sivakugan N, Das BM (2013) Correlation between gradational parameters and compaction characteristics of sandy soils. Int J Geotech Eng 7(4):395–401. https://doi.org/10.1179/1938636213Z.00000000045

    Article  Google Scholar 

  23. Hossein Alavi A, Hossein Gandomi A, Mollahassani A, Akbar Heshmati A, Rashed A (2010) Modeling of maximum dry density and optimum moisture content of stabilized soil using artificial neural networks. J Plant Nutr Soil Sci 173(3):368–379. https://doi.org/10.1002/jpln.200800233

    Article  Google Scholar 

  24. Alavi AH, Gandomi AH, Gandomi M, Sadat Hosseini SS (2009) Prediction of maximum dry density and optimum moisture content of stabilised soil using RBF neural networks. IES J Part A: Civ Struct Eng 2(2):98–106. https://doi.org/10.1080/19373260802659226

    Article  Google Scholar 

  25. Nagaraj HB, Reesha B, Sravan MV, Suresh MR (2015) Correlation of compaction characteristics of natural soils with modified plastic limit. Transp Geotech 2:65–77. https://doi.org/10.1016/j.trgeo.2014.09.002

    Article  Google Scholar 

  26. KS, Chew, YM, Osman MH, Mohamad Ghazali SK (2015) Estimating maximum dry density and optimum moisture content of compacted soils. In: International conference on advances in civil and environmental engineering, pp 1–8

  27. Benson CH, Trast JM (1995) Hydraulic conductivity of thirteen compacted clays. Clays Clay Miner 43(6):669–681

    Article  Google Scholar 

  28. Venkatasubramanian C, Dhinakaran G (2011) ANN model for predicting CBR from index properties of soils. Int J Civ Struct Eng 2(2):614–620

    Google Scholar 

  29. Saikia A, Baruah D, Das K, Rabha HJ, Dutta A, Saharia A (2017) Predicting compaction characteristics of fine-grained soils in terms of Atterberg limits. Int J Geosynth Ground Eng 3(2):1–9. https://doi.org/10.1007/s40891-017-0096-4

    Article  Google Scholar 

  30. Hair JF, Ortinau DJ, Harrison DE (2010) Essentials of marketing research, vol 2. McGraw-Hill/Irwin, New York

    Google Scholar 

  31. Vapnik V (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  32. Vapnik V (1998) The support vector method of function estimation. In: Suykens JAK, Vandewalle J (eds) Nonlinear modeling. Springer, Boston, pp 55–85. https://doi.org/10.1007/978-1-4615-5703-6_3

    Chapter  Google Scholar 

  33. Vapnik V (1999) The nature of statistical learning theory. Springer science & business media

  34. Kookalani S, Cheng B (2021) Structural analysis of GFRP elastic gridshell structures by particle swarm optimization and least square support vector machine algorithms. J Civ Eng Mater Appl 5(3):139–150. https://doi.org/10.22034/jcema.2021.304981.1064

    Article  Google Scholar 

  35. Acar MC, Kaya B (2020) Models to estimate the elastic modulus of weak rocks based on least square support vector machine. Arab J Geosci 13(14):1–12. https://doi.org/10.1007/s12517-020-05566-6

    Article  Google Scholar 

  36. Tang Y, Zang C, Wei Y, Jiang M (2019) Data-driven modeling of groundwater level with least-square support vector machine and spatial–temporal analysis. Geotech Geol Eng 37(3):1661–1670. https://doi.org/10.1007/s10706-018-0713-6

    Article  Google Scholar 

  37. Prayogo D, Susanto YTT (2018) Optimizing the prediction accuracy of friction capacity of driven piles in cohesive soil using a novel self-tuning least squares support vector machine. Adv Civil Eng. https://doi.org/10.1155/2018/6490169

    Article  Google Scholar 

  38. Kang F, Li JS, Li JJ (2016) System reliability analysis of slopes using least squares support vector machines with particle swarm optimization. Neurocomputing 209:46–56. https://doi.org/10.1016/j.neucom.2015.11.122

    Article  Google Scholar 

  39. Pham BT, Tien Bui D, Dholakia MB, Prakash I, Pham HV (2016) A comparative study of least square support vector machines and multiclass alternating decision trees for spatial prediction of rainfall-induced landslides in a tropical cyclones area. Geotech Geol Eng 34(6):1807–1824. https://doi.org/10.1007/s10706-016-9990-0

    Article  Google Scholar 

  40. Samui P, Kim D, Aiyer BG (2015) Pullout capacity of small ground anchor: a least square support vector machine approach. J Zhejiang Univ Sci A 16(4):295–301. https://doi.org/10.1631/jzus.A1200260

    Article  Google Scholar 

  41. Samui P, Kurup P (2012) Multivariate adaptive regression spline and least square support vector machine for prediction of undrained shear strength of clay. Int J Appl Metaheur Comput (IJAMC) 3(2):33–42. https://doi.org/10.4018/jamc.2012040103

    Article  Google Scholar 

  42. Samui P (2011) Least square support vector machine and relevance vector machine for evaluating seismic liquefaction potential using SPT. Nat Hazards 59(2):811–822. https://doi.org/10.1007/s11069-011-9797-5

    Article  Google Scholar 

  43. Hochreiter S, Schmidhuber J (1996). LSTM can solve hard long time lag problems. In: Advances in neural information processing systems, vol 9

  44. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  45. Filipović N, Brdar S, Mimić G, Marko O, Crnojević V (2022) Regional soil moisture prediction system based on Long Short-Term Memory network. Biosys Eng 213:30–38. https://doi.org/10.1016/j.biosystemseng.2021.11.019

    Article  Google Scholar 

  46. Biniyaz A, Azmoon B, Sun Y, Liu Z (2022) Long short-term memory based subsurface drainage control for rainfall-induced landslide prevention. Geosciences 12(2):64. https://doi.org/10.3390/geosciences12020064

    Article  Google Scholar 

  47. Liu Y, Li D, Wan S, Wang F, Dou W, Xu X, Li S, Ma R, Qi L (2022) A long short-term memory-based model for greenhouse climate prediction. Int J Intell Syst 37(1):135–151. https://doi.org/10.1002/int.22620

    Article  Google Scholar 

  48. Gao P, Qiu H, Lan Y, Wang W, Chen W, Han X, Lu J (2021) Modeling for the prediction of soil moisture in Litchi Orchard with deep long short-term memory. Agriculture 12(1):25. https://doi.org/10.3390/agriculture12010025

    Article  Google Scholar 

  49. Zhang X, Zhu C, He M, Dong M, Zhang G, Zhang F (2021) Failure mechanism and long short-term memory neural network model for landslide risk prediction. Remote Sens 14(1):166. https://doi.org/10.3390/rs14010166

    Article  Google Scholar 

  50. AlDahoul N, Essam Y, Kumar P, Ahmed AN, Sherif M, Sefelnasr A, Elshafie A (2021) Suspended sediment load prediction using long short-term memory neural network. Sci Rep 11(1):1–22. https://doi.org/10.1038/s41598-021-87415-4

    Article  Google Scholar 

  51. Tanyildizi H (2021) Predicting the geopolymerization process of fly ash-based geopolymer using deep long short-term memory and machine learning. Cem Concr Compos 123:104177. https://doi.org/10.1016/j.cemconcomp.2021.104177

    Article  Google Scholar 

  52. Ho TK (1995) August. Random decision forests. In Proceedings of 3rd international conference on document analysis and recognition. IEEE, vol 1, pp 278–282. https://doi.org/10.1109/ICDAR.1995.598994

  53. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844. https://doi.org/10.1109/34.709601

    Article  Google Scholar 

  54. Madeh Piryonesi S, El-Diraby TE (2021) Using machine learning to examine impact of type of performance indicator on flexible pavement deterioration modeling. J Infrastruct Syst 27(2):04021005. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000602

    Article  Google Scholar 

  55. Piryonesi SM, El-Diraby TE (2020) Role of data analytics in infrastructure asset management: overcoming data size and quality problems. J Transp Eng Part B: Pavements 146(2):04020022. https://doi.org/10.1061/JPEODX.0000175

    Article  Google Scholar 

  56. Zhang W, Wu C, Zhong H, Li Y, Wang L (2021) Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci Front 12(1):469–477. https://doi.org/10.1016/j.gsf.2020.03.007

    Article  Google Scholar 

  57. Zhang W, Zhang R, Wu C, Goh AT, Wang L (2020) Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression. Undergr Space 7(2):233–241. https://doi.org/10.1016/j.undsp.2020.03.001

    Article  Google Scholar 

  58. Zhang R, Li Y, Goh AT, Zhang W, Chen Z (2021) Analysis of ground surface settlement in anisotropic clays using extreme gradient boosting and random forest regression models. J Rock Mech Geotech Eng 13(6):1478–1484. https://doi.org/10.1016/j.jrmge.2021.08.001

    Article  Google Scholar 

  59. Nguyen QH, Ly HB, Ho LS, Al-Ansari N, Le HV, Tran VQ, Prakash I, Pham BT (2021) Influence of data splitting on performance of machine learning models in prediction of shear strength of soil. Math Problems Eng. https://doi.org/10.1155/2021/4832864

    Article  Google Scholar 

  60. Rezaee M, Mojtahedi SFF, Taherabadi E, Soleymani K, Pejman M (2021) Prediction of shear strength parameters of hydrocarbon contaminated sand based on machine learning methods. Georisk Assess Manag Risk Eng Syst Geohazards 15(4):317–335. https://doi.org/10.1080/17499518.2020.1861633

    Article  Google Scholar 

  61. Tanyu BF, Abbaspour A, Alimohammadlou Y, Tecuci G (2021) Landslide susceptibility analyses using Random Forest, C4. 5, and C5. 0 with balanced and unbalanced datasets. Catena, 203, p 105355. https://doi.org/10.1016/j.catena.2021.105355

  62. Ikeagwuani CC (2021) Estimation of modified expansive soil CBR with multivariate adaptive regression splines, random forest and gradient boosting machine. Innov Infrastructure Solut 6(4):1–16. https://doi.org/10.1007/s41062-021-00568-z

    Article  Google Scholar 

  63. Zhou J, Li E, Wei H, Li C, Qiao Q, Armaghani DJ (2019) Random forests and cubist algorithms for predicting shear strengths of rockfill materials. Appl Sci 9(8):1621. https://doi.org/10.3390/app9081621

    Article  Google Scholar 

  64. Nejad AS, Güler E, Özturan M (2018) Evaluation of liquefaction potential using random forest method and shear wave velocity results. In 2018 international conference on applied mathematics and computational science (ICAMCS. NET), pp 23–233 Oct 2018. IEEE, https://doi.org/10.1109/ICAMCS.NET46018.2018.00012

  65. Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM (2016) Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region. Saudi Arabia Landslides 13(5):839–856. https://doi.org/10.1007/s10346-015-0614-1

    Article  Google Scholar 

  66. Kohestani VR, Hassanlourad M, Ardakani AJNH (2015) Evaluation of liquefaction potential based on CPT data using random forest. Nat Hazards 79(2):1079–1089. https://doi.org/10.1007/s11069-015-1893-5

    Article  Google Scholar 

  67. Pham VN, Do HD, Oh E, Ong DE (2021) Prediction of unconfined compressive strength of cement-stabilized sandy soil in Vietnam using artificial neural networks (ANNs) model. Int J Geotech Eng 15(9):1177–1187. https://doi.org/10.1080/19386362.2020.1862539

    Article  Google Scholar 

  68. Moussas VC, Diamantis K (2021) Predicting uniaxial compressive strength of serpentinites through physical, dynamic and mechanical properties using neural networks. J Rock Mech Geotech Eng 13(1):167–175. https://doi.org/10.1016/j.jrmge.2020.10.001

    Article  Google Scholar 

  69. Ling Y, Wang K, Wang X, Li W (2021) Prediction of engineering properties of fly ash-based geopolymer using artificial neural networks. Neural Comput Appl 33(1):85–105. https://doi.org/10.1007/s00521-019-04662-3

    Article  Google Scholar 

  70. Fernando H, Nugroho SA, Suryanita R, Kikumoto M (2021) Prediction of SPT value based on CPT data and soil properties using ANN with and without normalization. Int J Artif Intell Res 5(2):123–131

    Article  Google Scholar 

  71. Marrapu BM, Kukunuri A, Jakka RS (2021) Improvement in prediction of slope stability and relative importance factors using ANN. Geotech Geol Eng 39(8):5879–5894. https://doi.org/10.1007/s10706-021-01872-2

    Article  Google Scholar 

  72. Williams CG, Ojuri OO (2021) Predictive modelling of soils’ hydraulic conductivity using artificial neural network and multiple linear regression. SN Appl Sci 3(2):1–13. https://doi.org/10.1007/s42452-020-03974-7

    Article  Google Scholar 

  73. Tabarsa A, Latifi N, Osouli A, Bagheri Y (2021) Unconfined compressive strength prediction of soils stabilized using artificial neural networks and support vector machines. Front Struct Civ Eng 15(2):520–536. https://doi.org/10.1007/s11709-021-0689-9

    Article  Google Scholar 

  74. Taffese WZ, Abegaz KA (2021) Artificial intelligence for prediction of physical and mechanical properties of stabilized soil for affordable housing. Appl Sci 11(16):7503. https://doi.org/10.3390/app11167503

    Article  Google Scholar 

  75. Kumar M, Kumar V, Biswas R, Samui P, Kaloop MR, Alzara M, Yosri AM (2022) Hybrid ELM and MARS-based prediction model for bearing capacity of shallow foundation. Processes 10(5):1013. https://doi.org/10.3390/pr10051013

    Article  Google Scholar 

  76. Yagiz S, Sezer EA, Gokceoglu C (2012) Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. Int J Numer Anal Methods Geomech 36(14):1636–1650. https://doi.org/10.1002/nag.1066

    Article  Google Scholar 

  77. Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32(13):2088–2094. https://doi.org/10.1002/joc.2419

    Article  Google Scholar 

  78. Mentaschi L, Besio G, Cassola F, Mazzino A (2013) Problems in RMSE-based wave model validations. Ocean Model 72:53–58. https://doi.org/10.1016/j.ocemod.2013.08.003

    Article  Google Scholar 

  79. Ris RC, Holthuijsen LH, Booij N (1999) A third-generation wave model for coastal regions: 2. Verif J Geophys Res Oceans 104(C4):7667–7681. https://doi.org/10.1029/1998JC900123

    Article  Google Scholar 

  80. Smith GN (1986) Probability and statistics in civil engineering. Collins professional and technical books 244

Download references

Funding

No funding was received in assisting the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JK is the main author and contributed to conceptualization, literature review, manuscript preparation, application of AI models, methodological development, statistical analysis, detailing, and overall analysis; KSG was involved in conceptualization, overall analysis, manuscript finalization, and detailed review and editing.

Corresponding author

Correspondence to Jitendra Khatti.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Software support

MATLAB R2020a: for developing, training, testing, and analyzing the soft computing models.

Origin 2022b: for graphical presentations and analysis.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1168 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatti, J., Grover, K.S. Prediction of compaction parameters of compacted soil using LSSVM, LSTM, LSBoostRF, and ANN. Innov. Infrastruct. Solut. 8, 76 (2023). https://doi.org/10.1007/s41062-023-01048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-023-01048-2

Keywords

Navigation