Skip to main content

Advertisement

Log in

The performance comparison of the soft computing methods on the prediction of soil compaction parameters

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The compaction parameters of soils known as the optimum moisture content (OMC) and maximum dry density (MDD) are necessary for the geotechnical engineering applications such as the fills, embankments, and dams. However, it takes a long time to determine the compaction parameters due to the laboratory test procedure. It was aimed to estimate the compaction parameters of soils with four soft computing methods and also to compare the performance of the methods in this study. For this purpose, a wide database consisting the index and standard proctor (SP) test results were used. Although all AI methods used in this study are successful on estimation of the MDD and OMC parameters, it was seen that the ELM method was the most successful method on the prediction of compaction parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdalla JA, Attom MF, Hawileh R (2015) Prediction of minimum factor of safety against slope failure in clayey soils using artificial neural network. Environ Earth Sci 73(9):5463–5477

    Article  Google Scholar 

  • Abdel-Rahman AH (2008) Predicting compaction of cohesionless soils using ANN. In: Proceedings of the institution of civil engineers ground improvement, vol 161, pp 3–8

  • Al-Khafaji AN (1993) Estimation of soil compaction parameters by means of Atterberg limits. Q J Eng Geol Hydrogeol 26:359–368. https://doi.org/10.1144/GSL.QJEGH.1993.026.004.10

    Article  Google Scholar 

  • Ardakani A, Kordnaeij A (2017) Soil compaction parameters prediction using GMDH-type neural network and genetic algorithm. Eur J Environ Civ Eng, 1–14

  • Bui DT, Pradhan B, Lofman O, Revhaug I, Dick OB (2012) Landslide susceptibility assessment in the Hoa Binh province of Vietnam: a comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology 171:12–29. https://doi.org/10.1016/j.geomorph.2012.04.023

  • Caballero J, Fernández M (2006) Linear and nonlinear modeling of antifungal activity of some heterocyclic ring derivatives using multiple linear regression and Bayesian-regularized neural networks. J Mol Model 12(2):168–181

    Article  Google Scholar 

  • Chenari RJ, Tizpa P, Rad MRG, Machado SL, Fard MK (2015) The use of index parameters to predict soil geotechnical properties. Arab J Geosci 8(7):4907–4919

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  • Das SK, Basudhar PK (2007) Prediction of hydraulic conductivity of clay liners using artificial neural network. Lowland Technol Int J 9(1):50–58

    Google Scholar 

  • Das SK, Samui P, Sabat AK, Sitharam TG (2010) Prediction of swelling pressure of soil using artificial intelligence techniques. Environ Earth Sci 61(2):393–403

    Article  Google Scholar 

  • Engin H (2003) A laboratory investigation on the correlations of standard and modified compaction test values. Master’s thesis, Dokuz Eylul University, Turkey

  • Ghanadzadeh H, Ganji M, Fallahi S (2012) Mathematical model of liquid–liquid equilibrium for a ternary system using the GMDH-type neural network and genetic algorithm. Appl Math Model 36:4096–4105

    Article  Google Scholar 

  • Gunaydin O (2009) Estimation of soil compaction parameters by using statistical analyses and artificial neural networks. Environ Geol 57:203–215. https://doi.org/10.1007/s00254-008-1300-6

    Article  Google Scholar 

  • Hassanlourad M, Ardakani A, Kordnaeij A, Mola-Abasi H (2017) Dry unit weight of compacted soils prediction using GMDH-type neural network. Eur Phys J Plus 132:357

    Article  Google Scholar 

  • Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489e501

    Article  Google Scholar 

  • Huang F, Huang J, Jiang S, Zhou C (2017a) Landslide displacement prediction based on multivariate chaotic model and extreme learning machine. Eng Geol 218:173–186

    Article  Google Scholar 

  • Huang F, Yin K, Huang J, Gui L, Wang P (2017b) Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng Geol 223:11–22

    Article  Google Scholar 

  • Isik F, Ozden G (2013) Estimating compaction parameters of fine- and coarse-grained soils by means of artificial neural networks. Environ Earth Sci 69:2287–2297. https://doi.org/10.1007/s12665-012-2057-5

    Article  Google Scholar 

  • Jeng YS and Strohm WE (1976) Prediction of the sherar strength and compaction characteristics of compacted fine-grained cohesive soils. Final report, U.S. Army engineer waterways Experiment Station, soils and pavement laboratory, Vicksburg

  • Jirdehi RA, Mamoudan HT, Sarkaleh HH (2014) Applying GMDH-type neural network and particle warm optimization for prediction of liquefaction induced lateral displacements. Appl Appl Math 9(2):528–540

    Google Scholar 

  • Juang CH, Chen CJ (1999) CPT-based liquefaction evaluation using artificial neural networks. Comput Aided Civ Inf Eng 14(3):221–229

    Article  Google Scholar 

  • Kalinli A, Acar MC, Gunduz Z (2011) New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization. Eng Geol 117(1–2):29–38. https://doi.org/10.1016/j.enggeo.2010.10.002

    Article  Google Scholar 

  • Kiefa MAA (1998) General regression neural networks for driven piles in cohesionless soils. Geotech Geoenviron Eng 124(12):1177–1185

    Article  Google Scholar 

  • Kim YS, Kim BT (2006) Use of artificial neural networks in the prediction of liquefaction resistance of sands. J. Geotech. Geoenviron. Eng. ASCE 132(11):1502–1504. https://doi.org/10.1061/ASCE1090-02412006132:111502

    Article  Google Scholar 

  • Kordjazi A, Nejad FP, Jaksa MB (2014) Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data. Comput Geotech 55:91–102. https://doi.org/10.1016/j.compgeo.2013.08.001

    Article  Google Scholar 

  • Kordnaeij A, Kalantary F, Kordtabar B, Mola-Abasi H (2015) Prediction of recompression index using GMDH-type neural network based on geotechnical soil properties. Soils Found 55(6):1335–1345

    Article  Google Scholar 

  • Kuo YL, Jaksa MB, Lyamin AV, Kaggwa WS (2009) ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil. Comput Geotech 36(3):503–516. https://doi.org/10.1016/j.compgeo.2008.07.002

    Article  Google Scholar 

  • Lee I, Lee J (1996) Prediction of pile bearing capacity using artificial neural networks. Comput Geotech 18(3):189–200. https://doi.org/10.1016/0266-352X(95)00027-8

    Article  Google Scholar 

  • Li AJ, Khoo S, Lyamin AV, Wang Y (2016) Rock slope stability analyses using extreme learning neural network and terminal steepest descent algorithm. Autom Constr 65:42–50

    Article  Google Scholar 

  • Liu Z, Shao J, Xu W, Chen H, Zhang Y (2014) An extreme learning machine approach for slope stability evaluation and prediction. Nat Hazards 73(2):787–804

    Article  Google Scholar 

  • Liu Z, Shao J, Xu W, Wu Q (2015) Indirect estimation of unconfined compressive strength of carbonate rocks using extreme learning machine. Acta Geotech 10(5):651–663

    Article  Google Scholar 

  • MacKay DJC (1991) Bayesian Methods for Adaptive Models. Ph.D. thesis, California Institute of Technology

  • Muduli PK, Das SK, Das MJ (2013) Prediction of lateral load capacity of piles using extreme learning machine. Int J Geotech Eng 7(4):388–394

    Article  Google Scholar 

  • Muduli PK, Das SK, Bhattacharya S (2014) CPT-based probabilistic evaluation of seismic soil liquefaction potential using multi-gene genetic programming. Georisk 8(1):14–28. https://doi.org/10.1080/17499518.2013.845720

    Article  Google Scholar 

  • Najjar YM, Basheer IA (1996) Utilizing computational neural networks for evaluating the permeability of compacted clay liners. Geotech Geol Eng 14:193–212

    Google Scholar 

  • Nejad FP, Jaksa MB, Kakhi M, McCabe BA (2009) Prediction of pile settlement using artificial neural networks based on standard penetration test data. Comput Geotech 36(7):1125–1133

    Article  Google Scholar 

  • Okut H (2016) Bayesian regularized neural networks for small n big p data. In Artificial Neural Networks-Models and Applications. InTech

  • Olmez A (2007) Determination of compaction parameters by means of regression approaches. Master’s thesis, Niğde Universty, Turkey (in Turkish)

  • Sabat AK (2015) Prediction of California bearing ratio of a stabilized expansive soil using artificial neural network and support vector machine. Electron J Geotech Eng 20(3):981–991

    Google Scholar 

  • Sakellariou MG, Ferentinou M (2005) A study of slope stability prediction using neural networks. Geotech Geol Eng 24(3):419–445

    Article  Google Scholar 

  • Samui P (2008) Support vector machine applied to settlement of shallow foundations on cohesionless soils. Comput Geotech 35(3):419–427. https://doi.org/10.1016/j.compgeo.2007.06.014

    Article  Google Scholar 

  • Samui P, Kothari DP (2011) Utilization of a least square support vector machine (LSSVM) for slope stability analysis. Scientia Iranica 18(1):53–58. https://doi.org/10.1016/j.scient.2011.03.007

    Article  Google Scholar 

  • Samui P, Sitharam TG, Kurup PU (2008) OCR prediction using support vector machine based on piezocone data. J Geotech Geoenviron Eng ASCE 134(6):894–898. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(894)

    Article  Google Scholar 

  • Sinha SK, Wang MC (2008) Artificial neural network prediction models for soil compaction and permeability. Geotech Geol Eng 26:47–64

    Article  Google Scholar 

  • Sivrikaya A (2008) Models of compacted fine-grained soils used as mineral liner for solid waste. Environ Geol 53:1585–1595

    Article  Google Scholar 

  • Sivrikaya A, Kayadelen C, Cecen E (2013) Prediction of the compaction parameters for coarse-grained soils with fines content by MLR and GEP Acta Geotechnica Slovenica, 2013/2

  • Sridharan A, Nagaraj HB (2005) Plastic limit and compaction characteristics of fine-grained soils. Ground Improv 9(1):17–22

    Article  Google Scholar 

  • Suman S, Mahamaya M, Das SK (2016) Prediction of maximum dry density and unconfined compressive strength of cement stabilised soil using artificial intelligence techniques. Int J Geosynth Ground Eng 2:11. https://doi.org/10.1007/s40891-016-0051-9

    Article  Google Scholar 

  • Tenpe A, Kaur S (2015) Artificial neural network modeling for predicting compaction parameters based on index properties of soil. International Journal of Science and Research (IJSR), Volume 4, Issue 7

  • Vissikirsky VA, Stepashko VS, Kalavrouziotis IK, Drakatos PA (2005) Growth dynamics of trees irrigated with wastewater: GMDH modeling, assessment, and control issues. Instrum Sci Technol 33(2):229–249

    Article  Google Scholar 

  • Wang MC and Huang CC (1984) Soil compaction and permeability prediction models. J Environ Eng ASCE, Vol 110. 6:1063-1083

  • Wang HB, Xu WY, Xu RC (2005) Slope stability evaluation using back propagation neural networks. Eng Geol 80:302–315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talas Fikret Kurnaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Zeynal Abiddin Erguler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurnaz, T.F., Kaya, Y. The performance comparison of the soft computing methods on the prediction of soil compaction parameters. Arab J Geosci 13, 159 (2020). https://doi.org/10.1007/s12517-020-5171-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-5171-9

Keywords

Navigation