Skip to main content
Log in

Use of natural vegetable fibers in cementitious composites: concepts and applications

  • Review
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

The application of vegetable fibers has gained great notoriety as a building material, due to its availability, mechanical properties and low cost. In this sense, the objective of this work is to carry out a bibliographic review on the application of this fibers in cementitious matrices, including concrete and mortar. This work analyzes the main characteristics of natural vegetable fibers that affect the properties of composites, such as geometric, physical, mechanical and chemical properties. The characteristics of the alkaline treatments carried out on the fibers are highlighted to improve the adhesion properties, durability, water absorption and tensile strength. Some case studies were analyzed in detail: coconut, bamboo and bananas fibers, all in combination with cementitious matrices. Finally, some suggestions for future work are highlighted, showing the need for further studies on the application of natural fibers in cementitious composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Oprea M, Voicu SI (2020) Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr Polym 247:116683. https://doi.org/10.1016/j.carbpol.2020.116683

    Article  Google Scholar 

  2. Claramunt J, Ventura H, Toledo Filho RD, Ardanuy M (2019) Effect of nanocelluloses on the microstructure and mechanical performance of CAC cementitious matrices. Cem Concr Res 119:64–76. https://doi.org/10.1016/j.cemconres.2019.02.006

    Article  Google Scholar 

  3. Kim Y, Park J (2020) A theory for the free vibration of a laminated composite rectangular plate with holes in aerospace applications. Compos Struct 251:112571. https://doi.org/10.1016/j.compstruct.2020.112571

    Article  Google Scholar 

  4. Nazarenko L, Stolarski H (2016) Energy-based definition of equivalent inhomogeneity for various interphase models and analysis of effective properties of particulate composites. Compos Part B Eng 94:82–94. https://doi.org/10.1016/j.compositesb.2016.03.015

    Article  Google Scholar 

  5. Chak V, Chattopadhyay H, Dora TL (2020) A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites. J Manuf Process 56:1059–1074. https://doi.org/10.1016/j.jmapro.2020.05.042

    Article  Google Scholar 

  6. Xie MS, Wang Z, Zhang GQ, Yang C, Zhang WW, Prashanth KG (2020) Microstructure and mechanical property of bimodal-size metallic glass particle-reinforced Al alloy matrix composites. J Alloys Compd 814:152317. https://doi.org/10.1016/j.jallcom.2019.152317

    Article  Google Scholar 

  7. He T, Lu T, Ciftci N, Tan H, Uhlenwinkel V, Nielsch K, Scudino S (2020) Mechanical properties and tribological behavior of aluminum matrix composites reinforced with Fe-based metallic glass particles: Influence of particle size. Powder Technol 361:512–519. https://doi.org/10.1016/j.powtec.2019.11.088

    Article  Google Scholar 

  8. Vijay V, Shyin PP, Biju VM, Devasia R (2020) Fabrication and property evaluation of titanium silicide active filler incorporated ceramic matrix composite. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.05.248

    Article  Google Scholar 

  9. Mitts C, Naboulsi S, Przybyla C, Madenci E (2020) Axisymmetric peridynamic analysis of crack deflection in a single strand ceramic matrix composite. Eng Fract Mech 235:107074. https://doi.org/10.1016/j.engfracmech.2020.107074

    Article  Google Scholar 

  10. May M, Hallett SR (2016) Damage initiation in polymer matrix composites under high-cycle fatigue loading—A question of definition or a material property? Int J Fatigue 87:59–62. https://doi.org/10.1016/j.ijfatigue.2016.01.011

    Article  Google Scholar 

  11. Singh B, Kumar R, Singh Chohan J (2020) Polymer matrix composites in 3D printing: a state of art review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.04.335

    Article  Google Scholar 

  12. Adole O, Barekar N, Anguilano L, Minton T, Novytskyi A, McKay B (2019) Fibre/matrix intermetallic phase formation in novel aluminium–basalt composites. Mater Lett 239:128–131. https://doi.org/10.1016/j.matlet.2018.12.079

    Article  Google Scholar 

  13. Vijayakumar S, Palanikumar K (2020) Evaluation on mechanical properties of randomly oriented Caryota fiber reinforced polymer composites. J Mater Res Technol 9:7915–7925. https://doi.org/10.1016/j.jmrt.2020.05.005

    Article  Google Scholar 

  14. Güler Ö, Bağcı N (2020) A short review on mechanical properties of graphene reinforced metal matrix composites. J Mater Res Technol 9:6808–6833. https://doi.org/10.1016/j.jmrt.2020.01.077

    Article  Google Scholar 

  15. Ligowski E, dos Santos BC, Fujiwara ST (2015) Materiais compósitos a base de fibras da cana-de-açúcar e polímeros reciclados obtidos através da técnica de extrusão. Polímeros 25:70–75. https://doi.org/10.1590/0104-1428.1605

    Article  Google Scholar 

  16. Fidelis MEA, Toledo Filho RD, de Andrade Silva F, Mobasher B, Müller S, Mechtcherine V (2019) Interface characteristics of jute fiber systems in a cementitious matrix. Cem Concr Res 116:252–265. https://doi.org/10.1016/j.cemconres.2018.12.002

    Article  Google Scholar 

  17. Suo Y, Wang B, Jia P, Gong Y (2020) Numerical analysis of mechanical properties and particle cracking probability of metal matrix composites. Mater Today Commun 24:101082. https://doi.org/10.1016/j.mtcomm.2020.101082

    Article  Google Scholar 

  18. Pakravan HR, Jamshidi M, Latifi M, Pacheco-Torgal F (2012) Evaluation of adhesion in polymeric fibre reinforced cementitious composites. Int J Adhes Adhes 32:53–60. https://doi.org/10.1016/j.ijadhadh.2011.08.009

    Article  Google Scholar 

  19. de Azevedo ARG, Marvila MT, Barroso LS, Zanelato EB, Alexandre J, Xavier GC, Monteiro SN (2019) Effect of granite residue incorporation on the behavior of mortars. Materials (Basel). https://doi.org/10.3390/ma12091449

    Article  Google Scholar 

  20. de Azevedo ARG, Alexandre J, Pessanha LSP, Manhães RST, de Brito J, Marvila MT (2019) Characterizing the paper industry sludge for environmentally-safe disposal. Waste Manag 95:43–52. https://doi.org/10.1016/j.wasman.2019.06.001

    Article  Google Scholar 

  21. Rostami R, Zarrebini M, Mandegari M, Mostofinejad D, Abtahi SM (2020) A review on performance of polyester fibers in alkaline and cementitious composites environments. Constr Build Mater 241:117998. https://doi.org/10.1016/j.conbuildmat.2020.117998

    Article  Google Scholar 

  22. Marvila MT, Alexandre J, de Azevedo ARG, Zanelato EB (2019) Evaluation of the use of marble waste in hydrated lime cement mortar based. J Mater Cycles Waste Manag 21:1250–1261. https://doi.org/10.1007/s10163-019-00878-6

    Article  Google Scholar 

  23. Anwar A, Mohammed BS, Wahab MA, Liew MS (2020) Enhanced properties of cementitious composite tailored with graphene oxide nanomaterial—a review. Dev Built Environ 1:100002. https://doi.org/10.1016/j.dibe.2019.100002

    Article  Google Scholar 

  24. Huang B-T, Li Q-H, Xu S-L, Zhou B-M (2018) Tensile fatigue behavior of fiber-reinforced cementitious material with high ductility: experimental study and novel P–S–N model. Constr Build Mater 178:349–359. https://doi.org/10.1016/j.conbuildmat.2018.05.166

    Article  Google Scholar 

  25. Abbass A, Lourenço PB, Oliveira DV (2020) The use of natural fibers in repairing and strengthening of cultural heritage buildings. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.02.206

    Article  Google Scholar 

  26. Bourmaud A, Shah DU, Beaugrand J, Dhakal HN (2020) Property changes in plant fibres during the processing of bio-based composites. Ind Crops Prod 154:112705. https://doi.org/10.1016/j.indcrop.2020.112705

    Article  Google Scholar 

  27. Morrissey FE, Coutts RSP, Grossman PUA (1985) Bond between cellulose fibres and cement. Int J Cem Compos Light Concr 7:73–80. https://doi.org/10.1016/0262-5075(85)90062-4

    Article  Google Scholar 

  28. Gonçalves MRF, Fillipeto CK, Vicenzi J, Bergmann CP (2011) Evaluation of mechanical performance of cement matrix composites with dispersed phases used in substitution to asbestos. Constr Build Mater 25:320–327. https://doi.org/10.1016/j.conbuildmat.2010.06.022

    Article  Google Scholar 

  29. Archez J, Texier-Mandoki N, Bourbon X, Caron JF, Rossignol S (2020) Influence of the wollastonite and glass fibers on geopolymer composites workability and mechanical properties. Constr Build Mater 257:119511. https://doi.org/10.1016/j.conbuildmat.2020.119511

    Article  Google Scholar 

  30. Swift DG, Smith RBL (1979) The flexural strength of cement-based composites using low modulus (sisal) fibres. Composites 10:145–148. https://doi.org/10.1016/0010-4361(79)90288-X

    Article  Google Scholar 

  31. Kulkarni AG, Satyanarayana KG, Sukumaran K, Rohatgi PK (1981) Mechanical behaviour of coir fibres under tensile load. J Mater Sci 16:905–914. https://doi.org/10.1007/BF00542734

    Article  Google Scholar 

  32. Kulkarni AG, Satyanarayana KG, Rohatgi PK, Vijayan K (1983) Mechanical properties of banana fibres (Musa sepientum). J Mater Sci 18:2290–2296. https://doi.org/10.1007/BF00541832

    Article  Google Scholar 

  33. Mukherjee PS, Satyanarayana KG (1984) Structure and properties of some vegetable fibres. J Mater Sci 19:3925–3934. https://doi.org/10.1007/BF00980755

    Article  Google Scholar 

  34. Mukherjee PS, Satyanarayana KG (1986) Structure and properties of some vegetable fibres. J Mater Sci 21:51–56. https://doi.org/10.1007/BF01144698

    Article  Google Scholar 

  35. Coutts RSP, Warden PG (1987) Air-cured abaca reinforced cement composites. Int J Cem Compos Light Concr 9:69–73. https://doi.org/10.1016/0262-5075(87)90021-2

    Article  Google Scholar 

  36. Coutts RSP (1989) Wastepaper fibres in cement products. Int J Cem Compos Light Concr 11:143–147. https://doi.org/10.1016/0262-5075(89)90085-7

    Article  Google Scholar 

  37. Akers SAS, Studinka JB (1989) Ageing behaviour of cellulose fibre cement composites in natural weathering and accelerated tests. Int J Cem Compos Light Concr 11:93–97. https://doi.org/10.1016/0262-5075(89)90119-X

    Article  Google Scholar 

  38. Coutts RSP, Ni Y (1995) Autoclaved bamboo pulp fibre reinforced cement. Cem Concr Compos 17:99–106. https://doi.org/10.1016/0958-9465(94)00002-G

    Article  Google Scholar 

  39. Toledo Filho RD, England GL, Ghavami K (1997) Comportamento em compressão de argamassas reforçadas com fibras naturais. I relação tensão-deformação experimental e processo de fratura. Rev Bras Eng Agrícola Ambient 1:79–88. https://doi.org/10.1590/1807-1929/agriambi.v1n1p79-88

    Article  Google Scholar 

  40. Quintero-Dávila M, Monteiro SN, Colorado HA (2019) Composites of Portland cement and fibers of Guadua angustifolia Kunth from Colombia. J Compos Mater. https://doi.org/10.1177/0021998318792297

    Article  Google Scholar 

  41. Loaiza A, Garcia E, Colorado HA (2019) Evaluation of asphalt binder blended with coconut coir dust and residual coconut fibers for structural applications. Rev La Constr. https://doi.org/10.7764/RDLC.17.3.542

    Article  Google Scholar 

  42. Savastano H, Agopyan V (1999) Transition zone studies of vegetable fibre-cement paste composites. Cem Concr Compos. https://doi.org/10.1016/S0958-9465(98)00038-9

    Article  Google Scholar 

  43. Spasiano D, Luongo V, Petrella A, Alfè M, Pirozzi F, Fratino U, Piccinni AF (2017) Preliminary study on the adoption of dark fermentation as pretreatment for a sustainable hydrothermal denaturation of cement-asbestos composites. J Clean Prod 166:172–180. https://doi.org/10.1016/j.jclepro.2017.08.029

    Article  Google Scholar 

  44. Hosseinpourpia R, Varshoee A, Soltani M, Hosseini P, Ziaei Tabari H (2012) Production of waste bio-fiber cement-based composites reinforced with nano-SiO2 particles as a substitute for asbestos cement composites. Constr Build Mater 31:105–111. https://doi.org/10.1016/j.conbuildmat.2011.12.102

    Article  Google Scholar 

  45. He Z, Shen A, Lyu Z, Li Y, Wu H, Wang W (2020) Effect of wollastonite microfibers as cement replacement on the properties of cementitious composites: a review. Constr Build Mater 261:119920. https://doi.org/10.1016/j.conbuildmat.2020.119920

    Article  Google Scholar 

  46. Liu J, Li J, Ye J, He F (2016) Setting behavior, mechanical property and biocompatibility of anti-washout wollastonite/calcium phosphate composite cement. Ceram Int 42:13670–13681. https://doi.org/10.1016/j.ceramint.2016.05.165

    Article  Google Scholar 

  47. Mu R, Xue Y, Qing L, Li H, Zhao Y, Zhou J, Su J (2019) Preparation and mechanical performance of annularly aligned steel fiber reinforced cement-based composite pipes. Constr Build Mater 211:167–173. https://doi.org/10.1016/j.conbuildmat.2019.03.146

    Article  Google Scholar 

  48. Jang A-Y, Lim S-H, Kim D-H, Yun H-D, Lee G-C, Seo S-Y (2020) Strain-Detecting properties of hybrid PE and steel fibers reinforced cement composite (Hy-FRCC) with Multi-Walled carbon nanotube (MWCNT) under repeated compression. Results Phys 18:103199. https://doi.org/10.1016/j.rinp.2020.103199

    Article  Google Scholar 

  49. Shettar M, Shettigar P, Manjunath M, Rao US (2020) Study on effect of water soaking conditions on properties and morphology of glass fiber–cement–polyester composites. J Mater Res Technol 9:8697–8704. https://doi.org/10.1016/j.jmrt.2020.05.117

    Article  Google Scholar 

  50. Rovero L, Galassi S, Misseri G (2020) Experimental and analytical investigation of bond behavior in glass fiber-reinforced composites based on gypsum and cement matrices. Compos Part B Eng 194:108051. https://doi.org/10.1016/j.compositesb.2020.108051

    Article  Google Scholar 

  51. Zhou Z, Xie N, Cheng X, Feng L, Hou P, Huang S, Zhou Z (2020) Electrical properties of low dosage carbon nanofiber/cement composite: percolation behavior and polarization effect. Cem Concr Compos 109:103539. https://doi.org/10.1016/j.cemconcomp.2020.103539

    Article  Google Scholar 

  52. Qureshi TS, Panesar DK (2020) Nano reinforced cement paste composite with functionalized graphene and pristine graphene nanoplatelets. Compos Part B Eng 197:108063. https://doi.org/10.1016/j.compositesb.2020.108063

    Article  Google Scholar 

  53. Mohammed BS, Aswin M, Beatty WH, Hafiz M (2016) Longitudinal shear resistance of PVA-ECC composite slabs. Structures 5:247–257. https://doi.org/10.1016/j.istruc.2015.12.003

    Article  Google Scholar 

  54. Ling Y, Zhang P, Wang J, Chen Y (2019) Effect of PVA fiber on mechanical properties of cementitious composite with and without nano-SiO2. Constr Build Mater 229:117068. https://doi.org/10.1016/j.conbuildmat.2019.117068

    Article  Google Scholar 

  55. Zukowski B, dos Santos Mendonça YG, de Andrade Silva F, Toledo Filho RD (2020) Effect of moisture movement on the tensile stress–strain behavior of SHCC with alkali treated curauá fiber. Mater Struct 53:49. https://doi.org/10.1617/s11527-020-01486-9

    Article  Google Scholar 

  56. da Silva EJ, da Silva PD, Marques ML, Fornari Junior CCM, Garcia FC, Luzardo FHM (2014) Resistência à compressão de argamassas em função da adição de fibra de coco. Rev Bras Eng Agrícola Ambient 18:1268–1273. https://doi.org/10.1590/1807-1929/agriambi.v18n12p1268-1273

    Article  Google Scholar 

  57. de Siqueira IS, Dweck J, Toledo Filho RD (2020) Effect of microcrystalline and microfibrillated cellulose on the evolution of hydration of cement pastes by thermogravimetry. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09572-4

    Article  Google Scholar 

  58. Marinelli AL, Monteiro MR, Ambrósio JD, Branciforti MC, Kobayashi M, Nobre AD (2008) Desenvolvimento de compósitos poliméricos com fibras vegetais naturais da biodiversidade: uma contribuição para a sustentabilidade amazônica. Polímeros 18:92–99. https://doi.org/10.1590/S0104-14282008000200005

    Article  Google Scholar 

  59. Khakpour H, Ayatollahi MR, Akhavan-Safar A, da Silva LFM (2020) Mechanical properties of structural adhesives enhanced with natural date palm tree fibers: Effects of length, density and fiber type. Compos Struct 237:111950. https://doi.org/10.1016/j.compstruct.2020.111950

    Article  Google Scholar 

  60. Zeng Q, Lu Q, Zhou Y, Chen N, Rao J, Fan M (2018) Circular development of recycled natural fibers from medium density fiberboard wastes. J Clean Prod 202:456–464. https://doi.org/10.1016/j.jclepro.2018.08.166

    Article  Google Scholar 

  61. Liu K, Cheng X, Zhang X, Guo X, Zhuang J (2018) Design of low-density cement optimized by cellulose-based fibre for oil and natural gas wells. Powder Technol 338:506–518. https://doi.org/10.1016/j.powtec.2018.07.016

    Article  Google Scholar 

  62. Mu R, Xing P, Yu J, Wei L, Zhao Q, Qing L, Zhou J, Tian W, Gao S, Zhao X, Wang X (2019) Investigation on reinforcement of aligned steel fiber on flexural behavior of cement-based composites using acoustic emission signal analysis. Constr Build Mater 201:42–50. https://doi.org/10.1016/j.conbuildmat.2018.12.084

    Article  Google Scholar 

  63. Feng H, Li L, Zhang P, Gao D, Zhao J, Feng L, Sheikh MN (2020) Microscopic characteristics of interface transition zone between magnesium phosphate cement and steel fiber. Constr Build Mater 253:119179. https://doi.org/10.1016/j.conbuildmat.2020.119179

    Article  Google Scholar 

  64. Lima PRL, Toledo Filho RD, Neumann R, Barros JAO (2019) Efeito do envelhecimento acelerado sobre as propriedades de microconcreto reforçado com fibras longas de sisal. Ambient Construído 19:7–20. https://doi.org/10.1590/s1678-86212019000100289

    Article  Google Scholar 

  65. Rodier L, da Costa Correia V, Savastano Junior H (2020) Elaboration of eco-efficient vegetable fibers reinforced cement-based composites using glass powder residue. Cem Concr Compos 110:103599. https://doi.org/10.1016/j.cemconcomp.2020.103599

    Article  Google Scholar 

  66. Wei J, Ma S, Thomas DG (2016) Correlation between hydration of cement and durability of natural fiber-reinforced cement composites. Corros Sci 106:1–15. https://doi.org/10.1016/j.corsci.2016.01.020

    Article  Google Scholar 

  67. Urrea-Ceferino GE, Rempe N, dos Santos V, Savastano Junior H (2017) Definition of optimal parameters for supercritical carbonation treatment of vegetable fiber-cement composites at a very early age. Constr Build Mater 152:424–433. https://doi.org/10.1016/j.conbuildmat.2017.06.182

    Article  Google Scholar 

  68. de Klerk MD, Kayondo M, Moelich GM, de Villiers WI, Combrinck R, Boshoff WP (2020) Durability of chemically modified sisal fibre in cement-based composites. Constr Build Mater 241:117835. https://doi.org/10.1016/j.conbuildmat.2019.117835

    Article  Google Scholar 

  69. Akinyemi AB, Omoniyi ET, Onuzulike G (2020) Effect of microwave assisted alkali pretreatment and other pretreatment methods on some properties of bamboo fibre reinforced cement composites. Constr Build Mater 245:118405. https://doi.org/10.1016/j.conbuildmat.2020.118405

    Article  Google Scholar 

  70. Siva R, Valarmathi TN, Palanikumar K, Samrot AV (2020) Study on a Novel natural cellulosic fiber from Kigelia africana fruit: characterization and analysis. Carbohydr Polym 244:116494. https://doi.org/10.1016/j.carbpol.2020.116494

    Article  Google Scholar 

  71. Patel N, Jain P (2020) An investigation on mechanical properties in randomly oriented short natural fiber reinforced composites. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.05.452

    Article  Google Scholar 

  72. Abiola OS (2017) Natural fibre cement composites. In: Adv. High Strength Nat. Fibre Compos. Constr., Elsevier, pp 205–214. https://doi.org/10.1016/B978-0-08-100411-1.00008-X

  73. Chen M, Ye L, Li H, Wang G, Chen Q, Fang C, Dai C, Fei B (2020) Flexural strength and ductility of moso bamboo. Constr Build Mater 246:118418. https://doi.org/10.1016/j.conbuildmat.2020.118418

    Article  Google Scholar 

  74. Abdul Khalil HPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368. https://doi.org/10.1016/j.matdes.2012.06.015

    Article  Google Scholar 

  75. Juarez CA, Fajardo G, Monroy S, Duran-Herrera A, Valdez P, Magniont C (2015) Comparative study between natural and PVA fibers to reduce plastic shrinkage cracking in cement-based composite. Constr Build Mater 91:164–170. https://doi.org/10.1016/j.conbuildmat.2015.05.028

    Article  Google Scholar 

  76. Bourmaud A, Morvan C, Bouali A, Placet V, Perré P, Baley C (2013) Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Ind Crops Prod 44:343–351. https://doi.org/10.1016/j.indcrop.2012.11.031

    Article  Google Scholar 

  77. Aymerich F, Fenu L, Francesconi L, Meloni P (2016) Fracture behaviour of a fibre reinforced earthen material under static and impact flexural loading. Constr Build Mater 109:109–119. https://doi.org/10.1016/j.conbuildmat.2016.01.046

    Article  Google Scholar 

  78. Del Masto A, Trivaudey F, Guicheret-Retel V, Placet V, Boubakar L (2019) Investigation of the possible origins of the differences in mechanical properties of hemp and flax fibres: a numerical study based on sensitivity analysis. Compos Part A Appl Sci Manuf 124:105488. https://doi.org/10.1016/j.compositesa.2019.105488

    Article  Google Scholar 

  79. Thiagamani SMK, Krishnasamy S, Muthukumar C, Tengsuthiwat J, Nagarajan R, Siengchin S, Ismail SO (2019) Investigation into mechanical, absorption and swelling behaviour of hemp/sisal fibre reinforced bioepoxy hybrid composites: Effects of stacking sequences. Int J Biol Macromol 140:637–646. https://doi.org/10.1016/j.ijbiomac.2019.08.166

    Article  Google Scholar 

  80. Razmi A, Mirsayar MM (2017) On the mixed mode I/II fracture properties of jute fiber-reinforced concrete. Constr Build Mater 148:512–520. https://doi.org/10.1016/j.conbuildmat.2017.05.034

    Article  Google Scholar 

  81. Islam MS, Ahmed SJ (2018) Influence of jute fiber on concrete properties. Constr Build Mater 189:768–776. https://doi.org/10.1016/j.conbuildmat.2018.09.048

    Article  Google Scholar 

  82. P. Sai Shravan Kumar, K. Viswanath Allamraju, A Review Of Natural Fiber Composites [Jute, Sisal, Kenaf], Mater. Today Proc. 18 (2019) 2556–2562. https://doi.org/10.1016/j.matpr.2019.07.113.

  83. Mohan TP, Kanny K (2019) Compressive characteristics of unmodified and nanoclay treated banana fiber reinforced epoxy composite cylinders. Compos Part B Eng 169:118–125. https://doi.org/10.1016/j.compositesb.2019.03.071

    Article  Google Scholar 

  84. Todkar SS, Patil SA (2019) Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Compos Part B Eng 174:106927. https://doi.org/10.1016/j.compositesb.2019.106927

    Article  Google Scholar 

  85. F.S. da Luz, F.J.H.T.V. Ramos, L.F.C. Nascimento, A.B.-H. da S. Figueiredo, S.N. Monteiro, Critical length and interfacial strength of PALF and coir fiber incorporated in epoxy resin matrix, J. Mater. Res. Technol. 7 (2018) 528–534. https://doi.org/10.1016/j.jmrt.2018.04.025.

  86. F. da C. Garcia Filho, F.S. da Luz, M.S. Oliveira, A.C. Pereira, U.O. Costa, S.N. Monteiro, Thermal behavior of graphene oxide-coated piassava fiber and their epoxy composites, J. Mater. Res. Technol. 9 (2020) 5343–5351. https://doi.org/10.1016/j.jmrt.2020.03.060.

  87. Miranda CS, Ferreira MS, Magalhães MT, Bispo APG, Oliveira JC, Silva JBA, José NM (2015) Starch-based Films Plasticized with Glycerol and Lignin from Piassava Fiber Reinforced with Nanocrystals from Eucalyptus. Mater Today Proc 2:134–140. https://doi.org/10.1016/j.matpr.2015.04.038

    Article  Google Scholar 

  88. V. Rebelo, Y. da Silva, S. Ferreira, R. Toledo Filho, V. Giacon, Effects of mercerization in the chemical and morphological properties of amazon piassava, Polímeros. 29 (2019). https://doi.org/10.1590/0104-1428.01717.

  89. B. Zukowski, F. de Andrade Silva, R.D. Toledo Filho, Design of strain hardening cement-based composites with alkali treated natural curauá fiber, Cem. Concr. Compos. 89 (2018) 150–159. https://doi.org/10.1016/j.cemconcomp.2018.03.006.

  90. Tomczak F, Satyanarayana KG, Sydenstricker THD (2007) Studies on lignocellulosic fibers of Brazil: Part III—Morphology and properties of Brazilian curauá fibers. Compos Part A Appl Sci Manuf 38:2227–2236. https://doi.org/10.1016/j.compositesa.2007.06.005

    Article  Google Scholar 

  91. d’Almeida JRM, Aquino RCMP, Monteiro SN (2006) Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers. Compos Part A Appl Sci Manuf 37:1473–1479. https://doi.org/10.1016/j.compositesa.2005.03.035

    Article  Google Scholar 

  92. Huo L, Bi J, Zhao Y, Wang Z (2021) Constitutive model of steel fiber reinforced concrete by coupling the fiber inclining and spacing effect. Constr Build Mater 280:122423. https://doi.org/10.1016/j.conbuildmat.2021.122423

    Article  Google Scholar 

  93. Wang L, He T, Zhou Y, Tang S, Tan J, Liu Z, Su J (2021) The influence of fiber type and length on the cracking resistance, durability and pore structure of face slab concrete. Constr Build Mater 282:122706. https://doi.org/10.1016/j.conbuildmat.2021.122706

    Article  Google Scholar 

  94. Bilisik K, Ozdemir H (2021) Multiaxis three-dimensional (3D) glass fiber preform/cementitious matrix concrete composites: Experimental characterizations by panel test. Cem Concr Compos 119:104020. https://doi.org/10.1016/j.cemconcomp.2021.104020

    Article  Google Scholar 

  95. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  Google Scholar 

  96. Kerni L, Singh S, Patnaik A, Kumar N (2020) A review on natural fiber reinforced composites. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.04.851

    Article  Google Scholar 

  97. Ariawan D, Surojo E, Triyono J, Purbayanto IF, Pamungkas AF, Prabowo AR (2020) Micromechanical analysis on tensile properties prediction of discontinuous randomized zalacca fibre/high-density polyethylene composites under critical fibre length. Theor Appl Mech Lett 10:57–65. https://doi.org/10.1016/j.taml.2020.01.009

    Article  Google Scholar 

  98. Jeon J, Kim W, Jeon C, Kim J (2014) Processing and Mechanical Properties of Macro Polyamide Fiber Reinforced Concrete. Materials (Basel) 7:7634–7652. https://doi.org/10.3390/ma7127634

    Article  Google Scholar 

  99. El-Newihy A, Azarsa P, Gupta R, Biparva A (2018) Effect of Polypropylene Fibers on Self-Healing and Dynamic Modulus of Elasticity Recovery of Fiber Reinforced Concrete. Fibers 6:9. https://doi.org/10.3390/fib6010009

    Article  Google Scholar 

  100. Zhang R, Jin L, Du X (2021) Three-dimensional meso-scale modelling of failure of steel fiber reinforced concrete at room and elevated temperatures. Constr Build Mater 278:122368. https://doi.org/10.1016/j.conbuildmat.2021.122368

    Article  Google Scholar 

  101. Galicia-Aldama E, Mayorga M, Arteaga-Arcos JC, Romero-Salazar L (2019) Rheological behaviour of cement paste added with natural fibres. Constr Build Mater 198:148–157. https://doi.org/10.1016/j.conbuildmat.2018.11.179

    Article  Google Scholar 

  102. Liao L, Zhao J, Zhang F, Li S, Wang Z (2020) Experimental study on compressive properties of SFRC under high strain rate with different fiber content and aspect ratio. Constr Build Mater 261:119906. https://doi.org/10.1016/j.conbuildmat.2020.119906

    Article  Google Scholar 

  103. Gao D, Ding C, Pang Y, Yang L, Huang Y, Tang J (2021) Diverse angle-length-width model for 3D/4D/5D steel fiber reinforced concrete under tension. Constr Build Mater 266:121149. https://doi.org/10.1016/j.conbuildmat.2020.121149

    Article  Google Scholar 

  104. Chegdani F, Takabi B, El Mansori M, Tai BL, Bukkapatnam STS (2020) Effect of flax fiber orientation on machining behavior and surface finish of natural fiber reinforced polymer composites. J Manuf Process 54:337–346. https://doi.org/10.1016/j.jmapro.2020.03.025

    Article  Google Scholar 

  105. Wansom S, Janjaturaphan S (2013) Evaluation of fiber orientation in plant fiber-cement composites using AC-impedance spectroscopy. Cem Concr Res 45:37–44. https://doi.org/10.1016/j.cemconres.2012.11.003

    Article  Google Scholar 

  106. Lee J-H, Hu JW, Kang J-W (2019) Effects of blades inside a nozzle on the fiber orientation and distribution in fiber-reinforced cement-based materials. Compos Struct 221:110885. https://doi.org/10.1016/j.compstruct.2019.04.057

    Article  Google Scholar 

  107. D.G. Soltan, P. das Neves, A. Olvera, H. Savastano Junior, V.C. Li, Introducing a curauá fiber reinforced cement-based composite with strain-hardening behavior, Ind. Crops Prod. 103 (2017) 1–12. https://doi.org/10.1016/j.indcrop.2017.03.016.

  108. Ahmed K, Nasir M, Fatima N, Khan KM, Zahra DN (2015) Structural mass irregularities and fiber volume influence on morphology and mechanical properties of unsaturated polyester resin in matrix composites. J Adv Res 6:833–838. https://doi.org/10.1016/j.jare.2014.06.007

    Article  Google Scholar 

  109. Azevedo AR, Marvila MT, Zanelato EB, Alexandre J, Xavier GC, Cecchin D (2020) Development of mortar for laying and coating with pineapple fiber. Rev Bras Eng Agric e Ambient. https://doi.org/10.1590/1807-1929/agriambi.v24n3p187-193

    Article  Google Scholar 

  110. Le LA, Nguyen GD, Bui HH, Sheikh AH, Kotousov A (2019) Incorporation of micro-cracking and fibre bridging mechanisms in constitutive modelling of fibre reinforced concrete. J Mech Phys Solids 133:103732. https://doi.org/10.1016/j.jmps.2019.103732

    Article  Google Scholar 

  111. Colorado HA, Zapata JF (2019) Composites of Portland cement paste and sugarcane bagasse fibers : structure-property relation and Weibull statistics 10:1162–1171

    Google Scholar 

  112. Teles MCA, Altoé GR, Netto PA, Colorado H, Margem FM, Monteiro SN (2015) Fique fiber tensile elastic modulus dependence with diameter using the Weibull statistical analysis. Mater Res. https://doi.org/10.1590/1516-1439.364514

    Article  Google Scholar 

  113. S.R. Ferreira, M. Pepe, E. Martinelli, F. de Andrade Silva, R.D. Toledo Filho, Influence of natural fibers characteristics on the interface mechanics with cement based matrices, Compos. Part B Eng. 140 (2018) 183–196. https://doi.org/10.1016/j.compositesb.2017.12.016.

  114. K. Majeed, M. Jawaid, A. Hassan, A. Abu Bakar, H.P.S. Abdul Khalil, A.A. Salema, I. Inuwa, Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites, Mater. Des. 46 (2013) 391–410. https://doi.org/10.1016/j.matdes.2012.10.044.

  115. An X, Liu J, Liu L, Zhang H, Nie S, Cao H, Xu Q, Liu H (2020) Improving the flexibility of bamboo mechanical pulp fibers for production of high soft tissue handsheets. Ind Crops Prod 150:112410. https://doi.org/10.1016/j.indcrop.2020.112410

    Article  Google Scholar 

  116. Rasheed M, Jawaid M, Parveez B, Zuriyati A, Khan A (2020) Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre. Int J Biol Macromol 160:183–191. https://doi.org/10.1016/j.ijbiomac.2020.05.170

    Article  Google Scholar 

  117. R.H.M. Reis, L.F. Nunes, M.S. Oliveira, V.F. de V. Junior, F.D.C.G. Filho, M.A. Pinheiro, V.S. Candido, S.N. Monteiro, Guaruman fiber: another possible reinforcement in composites, J. Mater. Res. Technol. 9 (2020) 622–628. https://doi.org/10.1016/j.jmrt.2019.11.002.

  118. Page J, Khadraoui F, Gomina M, Boutouil M (2019) Influence of different surface treatments on the water absorption capacity of flax fibres: Rheology of fresh reinforced-mortars and mechanical properties in the hardened state. Constr Build Mater 199:424–434. https://doi.org/10.1016/j.conbuildmat.2018.12.042

    Article  Google Scholar 

  119. Mayer-Laigle C, Bourmaud A, Shah DU, Follain N, Beaugrand J (2020) Unravelling the consequences of ultra-fine milling on physical and chemical characteristics of flax fibres. Powder Technol 360:129–140. https://doi.org/10.1016/j.powtec.2019.10.024

    Article  Google Scholar 

  120. Mahmoud MA (2020) Oil spill cleanup by raw flax fiber: Modification effect, sorption isotherm, kinetics and thermodynamics. Arab J Chem 13:5553–5563. https://doi.org/10.1016/j.arabjc.2020.02.014

    Article  Google Scholar 

  121. Buson RF, Melo LFL, Oliveira MN, Rangel GAVP, Deus EP (2018) Physical and mechanical characterization of surface treated bamboo fibers. Sci Technol Mater 30:67–73. https://doi.org/10.1016/j.stmat.2018.03.002

    Article  Google Scholar 

  122. E. Gümüşkaya, M. Usta, M. Balaban, Carbohydrate components and crystalline structure of organosolv hemp (Cannabis sativa L.) bast fibers pulp, Bioresour. Technol. 98 (2007) 491–497. https://doi.org/10.1016/j.biortech.2006.02.031.

  123. Hussain T, Ali M (2019) Improving the impact resistance and dynamic properties of jute fiber reinforced concrete for rebars design by considering tension zone of FRC. Constr Build Mater 213:592–607. https://doi.org/10.1016/j.conbuildmat.2019.04.036

    Article  Google Scholar 

  124. Nong G, Li P, Li Y, Xing D, Zhu T, Wu J, Gan W, Wang S, Yin Y (2019) Preparing tea filter papers with High air permeability from jute fibers for fast leaching. Ind Crops Prod 140:111619. https://doi.org/10.1016/j.indcrop.2019.111619

    Article  Google Scholar 

  125. V.C. Correia, S.F. Santos, G.H.D. Tonoli, H. Savastano, Characterization of vegetable fibers and their application in cementitious composites, in: Nonconv. Vernac. Constr. Mater., Elsevier, 2020: pp. 141–167. https://doi.org/10.1016/B978-0-08-102704-2.00007-X.

  126. Kenned JJ, Sankaranarayanasamy K, Binoj J, Chelliah SK (2020) Thermo-mechanical and morphological characterization of needle punched non-woven banana fiber reinforced polymer composites. Compos Sci Technol 185:107890. https://doi.org/10.1016/j.compscitech.2019.107890

    Article  Google Scholar 

  127. Gonçalves APB, de Miranda CS, Guimarães DH, de Oliveira JC, Cruz AMF, da Silva FLBM, Luporini S, José NM (2015) Physicochemical, Mechanical and Morphologic Characterization of Purple Banana Fibers. Mater Res 18:205–209. https://doi.org/10.1590/1516-1439.366414

    Article  Google Scholar 

  128. Putra A, Or KH, Selamat MZ, Nor MJM, Hassan MH, Prasetiyo I (2018) Sound absorption of extracted pineapple-leaf fibres. Appl Acoust 136:9–15. https://doi.org/10.1016/j.apacoust.2018.01.029

    Article  Google Scholar 

  129. M. Singh Bahra, V.K. Gupta, L. Aggarwal, Effect of Fibre Content on Mechanical Properties and Water Absorption Behaviour of Pineapple/HDPE Composite, Mater. Today Proc. 4 (2017) 3207–3214. https://doi.org/10.1016/j.matpr.2017.02.206.

  130. Munawar SS, Umemura K, Tanaka F, Kawai S (2008) Effects of alkali, mild steam, and chitosan treatments on the properties of pineapple, ramie, and sansevieria fiber bundles. J Wood Sci 54:28–35. https://doi.org/10.1007/s10086-007-0903-y

    Article  Google Scholar 

  131. Najeeb MI, Sultan MTH, Andou Y, Shah AU, Eksiler K, Jawaid M, Ariffin AH (2020) Characterization of silane treated Malaysian Yankee Pineapple AC6 leaf fiber (PALF) towards industrial applications. J Mater Res Technol 9:3128–3139. https://doi.org/10.1016/j.jmrt.2020.01.058

    Article  Google Scholar 

  132. Poletto M, Ornaghi H, Zattera A (2014) Native Cellulose: Structure, Characterization and Thermal Properties. Materials (Basel) 7:6105–6119. https://doi.org/10.3390/ma7096105

    Article  Google Scholar 

  133. K. Obi Reddy, G. Sivamohan Reddy, C. Uma Maheswari, A. Varada Rajulu, K. Madhusudhana Rao, Structural characterization of coconut tree leaf sheath fiber reinforcement, J. For. Res. 21 (2010) 53–58. https://doi.org/10.1007/s11676-010-0008-0.

  134. N. Rajini, J.T. Winowlin Jappes, S. Rajakarunakaran, C. Bennet, Effects of chemical modifications and MMT nanoclay addition on transport phenomena of naturally woven coconut sheath/polyester nanocomposites, Chinese J. Polym. Sci. 31 (2013) 1074–1086. https://doi.org/10.1007/s10118-013-1291-y.

  135. E.B.C. Santos, J.J.P. Barros, D.A. de Moura, C.G. Moreno, F. de C. Fim, L.B. da Silva, Rheological and thermal behavior of PHB/piassava fiber residue-based green composites modified with warm water, J. Mater. Res. Technol. 8 (2019) 531–540. https://doi.org/10.1016/j.jmrt.2018.05.005.

  136. L.O. de Souza, L.M.S. de Souza, F. de Andrade Silva, Mechanical autogenous recovery and crack sealing of natural curauá textile reinforced concrete, Constr. Build. Mater. 235 (2020) 117476. https://doi.org/10.1016/j.conbuildmat.2019.117476.

  137. de Azevedo ARG, Marvila MT, Tayeh BA, Cecchin D, Pereira AC, Monteiro SN (2021) Technological performance of açaí natural fibre reinforced cement-based mortars. J Build Eng 33:101675. https://doi.org/10.1016/j.jobe.2020.101675

    Article  Google Scholar 

  138. M. Mathavan, N. Sakthieswaran, O. Ganesh Babu, Experimental investigation on strength and properties of natural fibre reinforced cement mortar, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.06.295.

  139. Wei J, Meyer C (2017) Degradation of natural fiber in ternary blended cement composites containing metakaolin and montmorillonite. Corros Sci 120:42–60. https://doi.org/10.1016/j.corsci.2016.12.004

    Article  Google Scholar 

  140. John VM, Cincotto MA, Sjöström C, Agopyan V, Oliveira CTA (2005) Durability of slag mortar reinforced with coconut fibre. Cem Concr Compos 27:565–574. https://doi.org/10.1016/j.cemconcomp.2004.09.007

    Article  Google Scholar 

  141. Fernea R, Florea I, Manea DL, Pășcuță P, Tămaș-Gavrea DR (2018) X-ray diffraction study on new organic- natural building materials. Procedia Manuf 22:372–379. https://doi.org/10.1016/j.promfg.2018.03.056

    Article  Google Scholar 

  142. Ruano G, Bellomo F, López G, Bertuzzi A, Nallim L, Oller S (2020) Mechanical behaviour of cementitious composites reinforced with bagasse and hemp fibers. Constr Build Mater 240:117856. https://doi.org/10.1016/j.conbuildmat.2019.117856

    Article  Google Scholar 

  143. Teixeira RS, Santos SF, Christoforo AL, Payá J, Savastano H, Lahr FAR (2019) Impact of content and length of curauá fibers on mechanical behavior of extruded cementitious composites: Analysis of variance. Cem Concr Compos 102:134–144. https://doi.org/10.1016/j.cemconcomp.2019.04.022

    Article  Google Scholar 

  144. Wang Z, Li H, Jiang Z, Chen Q (2018) Effect of Waste Paper Fiber on Properties of Cement-based Mortar and Relative Mechanism. J Wuhan Univ Technol Sci Ed 33:419–426. https://doi.org/10.1007/s11595-018-1839-2

    Article  Google Scholar 

  145. Han J-W, Jeon J-H, Park C-G (2015) Bond Characteristics of Macro Polypropylene Fiber in Cementitious Composites Containing Nanosilica and Styrene Butadiene Latex Polymer. Int J Polym Sci 2015:1–9. https://doi.org/10.1155/2015/207456

    Article  Google Scholar 

  146. Ilyas RA, Sapuan SM, Ishak MR (2018) Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydr Polym 181:1038–1051. https://doi.org/10.1016/j.carbpol.2017.11.045

    Article  Google Scholar 

  147. Pietak A, Korte S, Tan E, Downard A, Staiger MP (2007) Atomic force microscopy characterization of the surface wettability of natural fibres. Appl Surf Sci 253:3627–3635. https://doi.org/10.1016/j.apsusc.2006.07.082

    Article  Google Scholar 

  148. Smarzewski P, Barnat-Hunek D (2017) Effect of Fiber Hybridization on Durability Related Properties of Ultra-High Performance Concrete. Int J Concr Struct Mater 11:315–325. https://doi.org/10.1007/s40069-017-0195-6

    Article  Google Scholar 

  149. Chen H, Zhang W, Wang X, Wang H, Wu Y, Zhong T, Fei B (2018) Effect of alkali treatment on wettability and thermal stability of individual bamboo fibers. J Wood Sci 64:398–405. https://doi.org/10.1007/s10086-018-1713-0

    Article  Google Scholar 

  150. M.V. Scatolino, C.S. Fonseca, M. da Silva Gomes, V.D. Rompa, M.A. Martins, G.H.D. Tonoli, L.M. Mendes, How the surface wettability and modulus of elasticity of the Amazonian paricá nanofibrils films are affected by the chemical changes of the natural fibers, Eur. J. Wood Wood Prod. 76 (2018) 1581–1594. https://doi.org/10.1007/s00107-018-1343-7.

  151. Tong J, Zhu F, Ma Y, Han Z, Ren L (2005) Wettability and soil friction of the wollastonite fiber filled UHMWPE composites. J Mater Sci 40:1823–1825. https://doi.org/10.1007/s10853-005-0703-y

    Article  Google Scholar 

  152. M.T. Marvila, A.R.G. Azevedo, D. Cecchin, J.M. Costa, G.C. Xavier, D. de Fátima do Carmo, S.N. Monteiro, Durability of coating mortars containing açaí fibers, Case Stud. Constr. Mater. 13 (2020) e00406. https://doi.org/10.1016/j.cscm.2020.e00406.

  153. A.R.G. de Azevedo, J. Alexandre, M.T. Marvila, G. de C. Xavier, S.N. Monteiro, L.G. Pedroti, Technological and environmental comparative of the processing of primary sludge waste from paper industry for mortar, J. Clean. Prod. 249 (2019) 119336. https://doi.org/10.1016/j.jclepro.2019.119336.

  154. Marvila MT, Alexandre J, Azevedo ARG, Zanelato EB, Xavier GC, Monteiro SN (2019) Study on the replacement of the hydrated lime by kaolinitic clay in mortars. Adv Appl Ceram 118:373–380. https://doi.org/10.1080/17436753.2019.1595266

    Article  Google Scholar 

  155. Patel JP, Parsania PH (2017) Fabrication and comparative mechanical, electrical and water absorption characteristic properties of multifunctional epoxy resin of bisphenol-C and commercial epoxy-treated and -untreated jute fiber-reinforced composites. Polym Bull 74:485–504. https://doi.org/10.1007/s00289-016-1725-0

    Article  Google Scholar 

  156. Habibi Y, El-Zawawy WK, Ibrahim MM, Dufresne A (2008) Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Compos Sci Technol 68:1877–1885. https://doi.org/10.1016/j.compscitech.2008.01.008

    Article  Google Scholar 

  157. Monteiro SN, Lopes FPD, Barbosa AP, Bevitori AB, Da Silva ILA, Da Costa LL (2011) Natural Lignocellulosic Fibers as Engineering Materials—An Overview. Metall Mater Trans A 42:2963–2974. https://doi.org/10.1007/s11661-011-0789-6

    Article  Google Scholar 

  158. Gupta MK, Srivastava RK (2015) Effect of Sisal Fibre Loading on Dynamic Mechanical Analysis and Water Absorption Behaviour of Jute Fibre Epoxy Composite. Mater Today Proc 2:2909–2917. https://doi.org/10.1016/j.matpr.2015.07.253

    Article  Google Scholar 

  159. Korniejenko K, Frączek E, Pytlak E, Adamski M (2016) Mechanical Properties of Geopolymer Composites Reinforced with Natural Fibers. Procedia Eng 151:388–393. https://doi.org/10.1016/j.proeng.2016.07.395

    Article  Google Scholar 

  160. Ruan P, Raghavan V, Du J, Gariepy Y, Lyew D, Yang H (2020) Effect of radio frequency pretreatment on enzymatic retting of flax stems and resulting fibers properties. Ind Crops Prod 146:112204. https://doi.org/10.1016/j.indcrop.2020.112204

    Article  Google Scholar 

  161. Wei J, Meyer C (2015) Degradation mechanisms of natural fiber in the matrix of cement composites. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2015.02.019

    Article  Google Scholar 

  162. Moshi AAM, Ravindran D, Bharathi SRS, Padma SR, Indran S, Divya D (2020) Characterization of natural cellulosic fiber extracted from Grewia damine flowering plant’s stem. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.07.225

    Article  Google Scholar 

  163. S. Sakuri, E. Surojo, D. Ariawan, A.R. Prabowo, Experimental investigation on mechanical characteristics of composite reinforced cantala fiber (CF) subjected to microcrystalline cellulose and fumigation treatments, Compos. Commun. (2020) 100419. https://doi.org/10.1016/j.coco.2020.100419.

  164. Summerscales J, Virk AS, Hall W (2020) Fibre area correction factors (FACF) for the extended rules-of-mixtures for natural fibre reinforced composites. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.01.552

    Article  Google Scholar 

  165. Khodayari A, Hirn U, Van Vuure AW, Seveno D (2020) Inverse rule of mixtures at the nanoscale: Prediction of elastic properties of cellulose nanofibrils. Compos Part A Appl Sci Manuf 138:106046. https://doi.org/10.1016/j.compositesa.2020.106046

    Article  Google Scholar 

  166. Zhang D, Yu J, Wu H, Jaworska B, Ellis BR, Li VC (2020) Discontinuous micro-fibers as intrinsic reinforcement for ductile Engineered Cementitious Composites (ECC). Compos Part B Eng 184:107741. https://doi.org/10.1016/j.compositesb.2020.107741

    Article  Google Scholar 

  167. Sreenivas HT, Krishnamurthy N, Arpitha GR (2020) A comprehensive review on light weight kenaf fiber for automobiles. Int J Light Mater Manuf 3:328–337. https://doi.org/10.1016/j.ijlmm.2020.05.003

    Article  Google Scholar 

  168. Ma W, Qin Y, Li Y, Chai J, Zhang X, Ma Y, Liu H (2020) Mechanical properties and engineering application of cellulose fiber-reinforced concrete. Mater Today Commun 22:100818. https://doi.org/10.1016/j.mtcomm.2019.100818

    Article  Google Scholar 

  169. Poletanovic B, Dragas J, Ignjatovic I, Komljenovic M, Merta I (2020) Physical and mechanical properties of hemp fibre reinforced alkali-activated fly ash and fly ash/slag mortars. Constr Build Mater 259:119677. https://doi.org/10.1016/j.conbuildmat.2020.119677

    Article  Google Scholar 

  170. Koushki P, Kwok T-H, Hof L, Wuthrich R (2020) Reinforcing silicone with hemp fiber for additive manufacturing. Compos Sci Technol 194:108139. https://doi.org/10.1016/j.compscitech.2020.108139

    Article  Google Scholar 

  171. Rao F, Ji Y, Li N, Zhang Y, Chen Y, Yu W (2020) Outdoor bamboo-fiber-reinforced composite: Influence of resin content on water resistance and mechanical properties. Constr Build Mater 261:120022. https://doi.org/10.1016/j.conbuildmat.2020.120022

    Article  Google Scholar 

  172. Sumesh KR, Kanthavel K, Kavimani V (2020) Peanut oil cake-derived cellulose fiber: Extraction, application of mechanical and thermal properties in pineapple/flax natural fiber composites. Int J Biol Macromol 150:775–785. https://doi.org/10.1016/j.ijbiomac.2020.02.118

    Article  Google Scholar 

  173. Komuraiah A, Kumar NS, Prasad BD (2014) Chemical Composition of Natural Fibers and its Influence on their Mechanical Properties. Mech Compos Mater 50:359–376. https://doi.org/10.1007/s11029-014-9422-2

    Article  Google Scholar 

  174. Baley C, Busnel F, Grohens Y, Sire O (2006) Influence of chemical treatments on surface properties and adhesion of flax fibre–polyester resin. Compos Part A Appl Sci Manuf 37:1626–1637. https://doi.org/10.1016/j.compositesa.2005.10.014

    Article  Google Scholar 

  175. R.D. Tolêdo Filho, K. Ghavami, G.L. England, K. Scrivener, Development of vegetable fibre–mortar composites of improved durability, Cem. Concr. Compos. 25 (2003) 185–196. https://doi.org/10.1016/S0958-9465(02)00018-5.

  176. B.S. Raju, L.H. Manjunatha, Santosh, N. Jagadeeswaran, Fabrication & characterization of ZnS micro particulate filled glass and jute fibre reinforced hybrid polymer composites, Mater. Today Proc. 20 (2020) 125–133. https://doi.org/10.1016/j.matpr.2019.10.061.

  177. Syed H, Nerella R, Madduru SRC (2020) Role of coconut coir fiber in concrete. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.01.477

    Article  Google Scholar 

  178. A.R. Azevedo, M.T. Marvila, E.B. Zanelato, J. Alexandre, Development of mortar for laying and coating with pineapple fibers e revestimento com fibras de abacaxi, (2020) 187–193. https://doi.org/10.1590/1807-1929/agriambi.v24n3p187-193.

  179. Jagadesh P, Ramachandramurthy A, Murugesan R (2018) Evaluation of mechanical properties of Sugar Cane Bagasse Ash concrete. Constr Build Mater 176:608–617. https://doi.org/10.1016/j.conbuildmat.2018.05.037

    Article  Google Scholar 

  180. Trabelsi A, Kammoun Z (2020) Mechanical properties and impact resistance of a high-strength lightweight concrete incorporating prickly pear fibres. Constr Build Mater 262:119972. https://doi.org/10.1016/j.conbuildmat.2020.119972

    Article  Google Scholar 

  181. de Azevedo ARG, Marvila MT, Antunes MLP, Rangel EC, Fediuk R (2021) Technological Perspective for Use the Natural Pineapple Fiber in Mortar to Repair Structures. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-021-01374-5

    Article  Google Scholar 

  182. S. Vigneshwaran, R. Sundarakannan, K.M. John, R.D. Joel Johnson, K.A. Prasath, S. Ajith, V. Arumugaprabu, M. Uthayakumar, Recent advancement in the natural fiber polymer composites: A comprehensive review, J. Clean. Prod. 277 (2020) 124109. https://doi.org/10.1016/j.jclepro.2020.124109.

  183. de Azevedo ARG, Klyuev S, Marvila MT, Vatin N, Alfimova N, de Lima TES, Fediuk R, Olisov A (2020) Investigation of the Potential Use of Curauá Fiber for Reinforcing Mortars. Fibers 8:69. https://doi.org/10.3390/fib8110069

    Article  Google Scholar 

  184. Azevedo A, de Matos P, Marvila M, Sakata R, Silvestro L, Gleize P, de Brito J (2021) Rheology, Hydration, and Microstructure of Portland Cement Pastes Produced with Ground Açaí Fibers. Appl Sci 11:3036. https://doi.org/10.3390/app11073036

    Article  Google Scholar 

  185. Mastali M, Dalvand A, Sattarifard AR, Illikainen M (2018) Development of eco-efficient and cost-effective reinforced self-consolidation concretes with hybrid industrial/recycled steel fibers. Constr Build Mater 166:214–226. https://doi.org/10.1016/j.conbuildmat.2018.01.147

    Article  Google Scholar 

  186. Hussain I, Ali B, Akhtar T, Jameel MS, Raza SS (2020) Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber-reinforcements (steel, glass, and polypropylene). Case Stud Constr Mater 13:e00429. https://doi.org/10.1016/j.cscm.2020.e00429

    Article  Google Scholar 

  187. S. Shahinur, M. Hasan, Natural Fiber and Synthetic Fiber Composites: Comparison of Properties, Performance, Cost and Environmental Benefits, in: Encycl. Renew. Sustain. Mater., Elsevier, 2020: pp. 794–802. https://doi.org/10.1016/B978-0-12-803581-8.10994-4.

  188. M. Jawaid, H.P.S. Abdul Khalil, Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review, Carbohydr. Polym. 86 (2011) 1–18. https://doi.org/10.1016/j.carbpol.2011.04.043.

  189. R.D. Tolêdo Filho, K. Scrivener, G.L. England, K. Ghavami, Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites, Cem. Concr. Compos. 22 (2000) 127–143. https://doi.org/10.1016/S0958-9465(99)00039-6.

  190. Parre A, Karthikeyan B, Balaji A, Udhayasankar R (2020) Investigation of chemical, thermal and morphological properties of untreated and NaOH treated banana fiber. Mater Today Proc 22:347–352. https://doi.org/10.1016/j.matpr.2019.06.655

    Article  Google Scholar 

  191. Gu H (2009) Tensile behaviours of the coir fibre and related composites after NaOH treatment. Mater Des 30:3931–3934. https://doi.org/10.1016/j.matdes.2009.01.035

    Article  Google Scholar 

  192. A. Balaji, B. Karthikeyan, J. Swaminathan, C. Sundar Raj, Thermal behavior of cardanol resin reinforced 20 mm long untreated bagasse fiber composites, Int. J. Polym. Anal. Charact. 23 (2018) 70–77. https://doi.org/10.1080/1023666X.2017.1387448.

  193. Urrea-Ceferino GE, Panesar DK, Savastano H (2019) Adjusting curing parameters for innovative and durable vegetable fibre-cement composites. Cem Concr Compos 103:121–133. https://doi.org/10.1016/j.cemconcomp.2019.04.028

    Article  Google Scholar 

  194. Wei J (2018) Degradation behavior and kinetics of sisal fiber in pore solutions of sustainable cementitious composite containing metakaolin. Polym Degrad Stab 150:1–12. https://doi.org/10.1016/j.polymdegradstab.2018.01.027

    Article  Google Scholar 

  195. Bui H, Boutouil M, Levacher D, Sebaibi N (2021) Evaluation of the influence of accelerated carbonation on the microstructure and mechanical characteristics of coconut fibre-reinforced cementitious matrix. J Build Eng 39:102269. https://doi.org/10.1016/j.jobe.2021.102269

    Article  Google Scholar 

  196. Akinyemi BA, Dai C (2020) Development of banana fibers and wood bottom ash modified cement mortars. Constr Build Mater 241:118041. https://doi.org/10.1016/j.conbuildmat.2020.118041

    Article  Google Scholar 

  197. Poongodi K, Murthi P (2020) Impact strength enhancement of banana fibre reinforced lightweight self-compacting concrete. Mater Today Proc 27:1203–1209. https://doi.org/10.1016/j.matpr.2020.02.108

    Article  Google Scholar 

  198. Elbehiry A, Elnawawy O, Kassem M, Zaher A, Uddin N, Mostafa M (2020) Performance of concrete beams reinforced using banana fiber bars. Case Stud Constr Mater 13:e00361. https://doi.org/10.1016/j.cscm.2020.e00361

    Article  Google Scholar 

  199. K.V. Sabarish, P. Paul, Bhuvaneshwari, J. Jones, An experimental investigation on properties of sisal fiber used in the concrete, Mater. Today Proc. 22 (2020) 439–443. https://doi.org/10.1016/j.matpr.2019.07.686.

  200. C.B. de Carvalho Bello, I. Boem, A. Cecchi, N. Gattesco, D. V. Oliveira, Experimental tests for the characterization of sisal fiber reinforced cementitious matrix for strengthening masonry structures, Constr. Build. Mater. 219 (2019) 44–55. https://doi.org/10.1016/j.conbuildmat.2019.05.168.

  201. Sultana N, Hossain SMZ, Alam MS, Hashish MMA, Islam MS (2020) An experimental investigation and modeling approach of response surface methodology coupled with crow search algorithm for optimizing the properties of jute fiber reinforced concrete. Constr Build Mater 243:118216. https://doi.org/10.1016/j.conbuildmat.2020.118216

    Article  Google Scholar 

  202. M.T. Marvila, A.R.G. Azevedo, J. Alexandre, E.B. Zanelato, S.N. Monteiro, D. Cecchin, L.F. Amaral, Mortars with Pineapple Fibers for Use in Structural Reinforcement, in: 2019: pp. 721–728. https://doi.org/10.1007/978-3-030-05749-7_72.

  203. Syed H, Nerella R, Madduru SRC (2020) Role of coconut coir fiber in concrete. Mater Today Proc 27:1104–1110. https://doi.org/10.1016/j.matpr.2020.01.477

    Article  Google Scholar 

  204. Danso H, Manu D (2020) Influence of coconut fibres and lime on the properties of soil-cement mortar. Case Stud Constr Mater 12:e00316. https://doi.org/10.1016/j.cscm.2019.e00316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afonso Rangel Garcez de Azevedo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marvila, M.T., Rocha, H.A., de Azevedo, A.R.G. et al. Use of natural vegetable fibers in cementitious composites: concepts and applications. Innov. Infrastruct. Solut. 6, 180 (2021). https://doi.org/10.1007/s41062-021-00551-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-021-00551-8

Keywords

Navigation