Skip to main content

Advertisement

Log in

Effectiveness of using rubber waste as aggregates for improving thermal performance of plaster-based composites

  • Practice-oriented paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

In this paper, rubber waste is added to plaster-based composite to produce an alternative construction material. The main goal of this study is to investigate the effectiveness of using shredded rubber waste as aggregates in plaster mortar for improving its insulating aspect potential. This composite is obtained by mixing dune sand, plaster, rubber particles, and water. The rubber aggregates are incorporated in mixes as a partial replacement by volume of some parts of sand. Unit weight, capillary absorption of water, mechanical, and thermal-related properties are evaluated and compared according to the percentage of rubber in the mix. The results obtained showed that the addition of rubber will modify the properties of the mortar. Even though the mechanical strength is decreased with the increase of rubber content, it should be mentioned that rubber particles could significantly reduce the weight the material, decrease the rate of water absorption, and improve the insulation aspect of the composite. It can be noted that, below 50% of rubber, modeling by auto-coherent homogenization confirms the experimental results of thermal conductivity. Finally, it should be noted that recycling of rubber waste can produce an alternative eco-friendly material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and material (data transparency)

All authors declare that all data and materials included in the study comply with field standards.

References

  1. Djoudi A, Khenfer MM, Bali A, Bouziani T (2014) Effect of the addition of date palm fibers on thermal properties of plaster concrete: experimental study and modeling. J Adhes Sci Technol 28:2100–2111. https://doi.org/10.1080/01694243.2014.948363

    Article  Google Scholar 

  2. Laoubi H, Djoudi A, Dheilly RM et al (2019) Durability of a lightweight construction material made with dune sand and expanded polystyrene. J Adhes Sci Technol. https://doi.org/10.1080/01694243.2019.1637091

    Article  Google Scholar 

  3. Berardi U (2017) A cross-country comparison of the building energy consumptions and their trends. Resour Conserv Recycl 123:230–241. https://doi.org/10.1016/j.resconrec.2016.03.014

    Article  Google Scholar 

  4. Berardi U, Tronchin L, Massimiliano M, Nastasi B (2018) On the effects of variation of thermal conductivity in buildings in the Italian Construction Sector. Energies 11:1–17. https://doi.org/10.3390/en11040872

    Article  Google Scholar 

  5. Badens E (1998) Etude de l’adsorption de l’eau sur les cristaux de gypse et de son influence sur les propriétés mécaniques du plâtre pris pur et additive. Université de Aix-Marseille, Marseille, p 3

    Google Scholar 

  6. Djoudi A (2015) Etude de la durabilité et du comportement thermo-phonique des bétons de platre renforcés par des fibres végétales du palmier dattier. ENP d’Alger, El Harrach

    Google Scholar 

  7. Laoubi H, Bederina M, Djoudi A et al (2018) Study of a new plaster composite based on dune sand and expanded polystyrene as aggregates. Open Civil Eng J 12:401–412. https://doi.org/10.2174/1874149501812010401

    Article  Google Scholar 

  8. Herrero S, Mayor P, Hernández-olivares F (2013) Influence of proportion and particle size gradation of rubber from end-of-life tires on mechanical, thermal and acoustic properties of plaster—nrubber mortars. Mater Des 47:633–642. https://doi.org/10.1016/j.matdes.2012.12.063

    Article  Google Scholar 

  9. Meddah A, Bali A, Beddar M (2015) Valorization of rubber waste in concrete pavement. In: Beddar M, Meddah A (eds) Journées d’étude de Génie Civil JEGC 2015. M’sila University, Algeria, pp 47–53

    Google Scholar 

  10. Meddah A, Beddar M, Bali A (2014) Use of shredded rubber tire aggregates for roller compacted concrete pavement. J Clean Prod 72:187–192. https://doi.org/10.1016/j.jclepro.2014.02.052

    Article  Google Scholar 

  11. Meddah A, Beddar M, Bali A (2014) Experimental study of compaction quality for roller compacted concrete pavement containing rubber tire wastes. In: Sustainability, eco-efficiency and conservation in transportation infrastructure asset management—proceedings of the 3rd international conference on tranportation infrastructure, ICTI 2014, Piza, Italy, 22–25 April 2014

  12. Meddah A, Bensaci H, Beddar M, Bali A (2017) Study of the effects of mechanical and chemical treatment of rubber on the performance of rubberized roller-compacted concrete pavement. Innov Infrastruct Solut. https://doi.org/10.1007/s41062-017-0068-5

    Article  Google Scholar 

  13. Meddah A, Merzoug K (2017) Feasibility of using rubber waste fibers as reinforcements for sandy soils. Innov Infrastruct Solut 2:5. https://doi.org/10.1007/s41062-017-0053-z

    Article  Google Scholar 

  14. Balunaini U, Yoon S, Prezzi M, Salgado R (2014) Pullout response of Uniaxial Geogrid in tire shred-sand mixtures. Geotech Geol Eng 32:505–523. https://doi.org/10.1007/s10706-014-9731-1

    Article  Google Scholar 

  15. CNERIB (1993) Recommandations pour la construction en platre (Recommendations for construction with Plaster): Cnerib Report. Ministère de l’Habitat, de l’urbanisme et de la ville, Sidi M'Hamed

    Google Scholar 

  16. NF-EN13279-2 (2014) Gypsum binders and gypsum plasters—part 2: test methods. NSAI, Washington

    Google Scholar 

  17. ASTM C 1585 (2013) Standard test method for measurement of rate of absorption of water by hydraulic-. ASTM Int. https://doi.org/10.1520/C1585-13.2

    Article  Google Scholar 

  18. Benazzouk A, Douzane O, Langlet T et al (2007) Physico-mechanical properties and water absorption of cement composite containing shredded rubber wastes. Cem Concr Compos 29:732–740. https://doi.org/10.1016/j.cemconcomp.2007.07.001

    Article  Google Scholar 

  19. Meddah A (2015) Caractérisation d’un béton compacté contenant des déchets pneumatiques. ENP d’Alger, El Harrach

    Google Scholar 

  20. Ling TC, Nor HM, Lim SK (2010) Using recycled waste tyres in concrete paving blocks. Proc Inst Civil Eng Waste Resour Manag 163:37–45. https://doi.org/10.1680/warm.2010.163.1.37

    Article  Google Scholar 

  21. Hesami S, Salehi Hikouei I, Emadi SAA (2016) Mechanical behavior of self-compacting concrete pavements incorporating recycled tire rubber crumb and reinforced with polypropylene fiber. J Clean Prod 133:228–234. https://doi.org/10.1016/j.jclepro.2016.04.079

    Article  Google Scholar 

  22. Bisht K, Ramana PV (2017) Evaluation of mechanical and durability properties of crumb rubber concrete. Constr Build Mater 155:811–817. https://doi.org/10.1016/j.conbuildmat.2017.08.131

    Article  Google Scholar 

  23. Thakur A, Senthil K, Sharma R, Singh AP (2020) Employment of crumb rubber tyre in concrete masonry bricks. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.02.106

    Article  Google Scholar 

  24. Topçu IB (1995) The properties of rubberized concretes. Cem Concr Res 25:304–310. https://doi.org/10.1016/0008-8846(95)00014-3

    Article  Google Scholar 

  25. Khatib ZK, Bayomy FM (1999) Rubberized portland cement concrete. J Mater Civil Eng 11:206–213. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206)

    Article  Google Scholar 

  26. Boudaoud Z, Beddar M (2012) Effects of recycled tires rubber aggregates on the characteristics of cement concrete. Open J Civil Eng 02:193–197. https://doi.org/10.4236/ojce.2012.24025

    Article  Google Scholar 

  27. Ho AC (2010) Optimisation de la composition et caractérisation d’un béton incorporant des granulats issus du broyage de pneus usagés: application aux éléments de grande surface. L’Insa de Toulouse, France

    Google Scholar 

  28. Eldin NN, Senouci A (1993) Rubber-tire particles as concrete aggregtaes. J Mater Civil Eng 5:478–496. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:4(478)

    Article  Google Scholar 

  29. Raghavan D, Uynh HH, Fe Rraris CF (1998) Workability, mech anical properties, and chemical stability of a recycled tyre rubber-filled cementitious composite. J Mater Sci 33:1745–1752

    Article  Google Scholar 

  30. Segre N, Joekes I (2000) Use of tire rubber particles as addition to cement paste. Cem Concr Res 30:1421–1425. https://doi.org/10.1016/S0008-8846(00)00373-2

    Article  Google Scholar 

  31. Rivero AJ, de Báez A, Navarro JG (2014) New composite gypsym-waste rubber from pipe foam insulation: characterization. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2014.01.027

    Article  Google Scholar 

  32. Lam K, Oyedun A, Cheung K et al (2011) Modelling pyrolysis with dynamic heating. Chem Eng Sci 66:6505–6514

    Article  Google Scholar 

  33. Cerezo V (2005) Propriétés mécaniques, thermiques et acoustiques d’un matériau à base de particules végétales: approche expérimentale et modélisation théorique. INSA de Lyon, Lyon

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, mix design, material preparation, data collection, and analysis.

Corresponding author

Correspondence to Abdelaziz Meddah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meddah, A., Laoubi, H. & Bederina, M. Effectiveness of using rubber waste as aggregates for improving thermal performance of plaster-based composites. Innov. Infrastruct. Solut. 5, 61 (2020). https://doi.org/10.1007/s41062-020-00311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-020-00311-0

Keywords

Navigation