Skip to main content

Advertisement

Log in

DNA–Iron Oxide Nanoparticles Conjugates: Functional Magnetic Nanoplatforms in Biomedical Applications

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

The use of magnetic nanoparticles (MNPs), such as iron oxide nanoparticles (IONPs), in biomedicine is considered to be a valuable alternative to the more traditional materials due to their chemical stability, cost-effectiveness, surface functionalization, and the possibility to selectively attach and transport targeted species to the desired location under a magnetic field. One of the many main applications of MNPs is DNA separation, which enables genetic material manipulation; consequently, MNPs are used in numerous biotechnological methods, such as gene transfection and molecular recognition systems. In addition, the interaction between the surfaces of MNPs and DNA molecules and the magnetic nature of the resulting composite have facilitated the development of safe and effective gene delivery vectors to treat significant diseases, such as cancer and neurological disorders. Furthermore, the special recognition properties of nucleic acids based on the binding capacity of DNA and the magnetic behavior of the nanoparticles allowing magnetic separation and concentration of analytes have led to the development of biosensors and diagnostic assays; however, both of these applications face important challenges in terms of the improvement of selective nanocarriers and biosensing capacity. In this review, we discuss some aspects of the properties and surface functionalization of MNPs, the interactions between DNA and IONPs, the preparation of DNA nanoplatforms and their biotechnological applications, such as the magnetic separation of DNA, magnetofection, preparation of DNA vaccines, and molecular recognition tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

APTES:

(3-Aminopropyl) triethoxysilane

CuAAC:

Cu(I)-catalyzed azide-alkyne cycloaddition

IONPs:

Iron oxide nanoparticles

MNPs:

Magnetic nanoparticles

ODN:

Oligonucleotide

PAMAM:

Polyamidoamine dendrimers

PEG:

Polyethylene glycol

PEI:

Polyethylenimine

pHEMA:

Poly(2-hydroxyethyl methacrylate)

PNA:

4-Pyridyldithiol-derivatized peptide nucleic acid

siRNAs:

Small interfering RNAs

ssDNA:

Single-stranded DNA

ssODN:

Single-stranded oligonucleotide

TEOS:

Tetraethyl orthosilane

TMOS:

Tetramethyl orthosilane

References

  1. Jeevanandam J, Barhoum A, Chan YS et al (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahsan MA, Jabbari V, Islam MT et al (2019) Sustainable synthesis and remarkable adsorption capacity of MOF/graphene oxide and MOF/CNT based hybrid nanocomposites for the removal of Bisphenol A from water. Sci Total Environ 673:306–317. https://doi.org/10.1016/j.scitotenv.2019.03.219

    Article  CAS  PubMed  Google Scholar 

  3. Ahsan MA, Jabbari V, Imam MA et al (2020) Nanoscale nickel metal organic framework decorated over graphene oxide and carbon nanotubes for water remediation. Sci Total Environ 698:134214. https://doi.org/10.1016/j.scitotenv.2019.134214

    Article  CAS  PubMed  Google Scholar 

  4. Ahsan MA, Deemer E, Fernandez-Delgado O et al (2019) Fe nanoparticles encapsulated in MOF-derived carbon for the reduction of 4-nitrophenol and methyl orange in water. Catal Commun 130:105753. https://doi.org/10.1016/j.catcom.2019.105753

    Article  CAS  Google Scholar 

  5. Ahsan MA, Fernandez-Delgado O, Deemer E et al (2019) Carbonization of Co-BDC MOF results in magnetic C@Co nanoparticles that catalyze the reduction of methyl orange and 4-nitrophenol in water. J Mol Liq 290:111059. https://doi.org/10.1016/j.molliq.2019.111059

    Article  CAS  Google Scholar 

  6. Ahsan MA, Jabbari V, El-Gendy AA et al (2019) Ultrafast catalytic reduction of environmental pollutants in water via MOF-derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon. Appl Surf Sci 497:143608. https://doi.org/10.1016/j.apsusc.2019.143608

    Article  CAS  Google Scholar 

  7. Franco A, Cebrián-García S, Rodríguez-Padrón D et al (2018) Encapsulated laccases as effective electrocatalysts for oxygen reduction reactions. ACS Sustain Chem Eng 6:11058–11062. https://doi.org/10.1021/acssuschemeng.8b02529

    Article  CAS  Google Scholar 

  8. Cova CM, Zuliani A, Puente Santiago AR et al (2018) Microwave-assisted preparation of Ag/Ag2S carbon hybrid structures from pig bristles as efficient HER catalysts. J Mater Chem A 6:21516–21523. https://doi.org/10.1039/C8TA06417B

    Article  CAS  Google Scholar 

  9. Ostovar S, Franco A, Puente-Santiago AR et al (2018) Efficient mechanochemical bifunctional nanocatalysts for the conversion of isoeugenol to vanillin. Front Chem 6:1–7. https://doi.org/10.3389/fchem.2018.00077

    Article  CAS  Google Scholar 

  10. Rodríguez-Padrón D, Puente-Santiago AR, Balu AM et al (2019) Environmental catalysis: present and future. ChemCatChem 11:18–38. https://doi.org/10.1002/cctc.201801248

    Article  CAS  Google Scholar 

  11. Feng S, Li D, Low Z et al (2017) ALD-seeded hydrothermally-grown Ag/ZnO nanorod PTFE membrane as efficient indoor air filter. J Memb Sci 531:86–93. https://doi.org/10.1016/j.memsci.2017.02.042

    Article  CAS  Google Scholar 

  12. Shalan AE, El-Shazly AN, Rashad MM, Allam NK (2019) Tin-zinc-oxide nanocomposites (SZO) as promising electron transport layers for efficient and stable perovskite solar cells. Nanoscale Adv 1:2654–2662. https://doi.org/10.1039/c9na00182d

    Article  CAS  Google Scholar 

  13. Sanad MF, Shalan AE, Bazid SM et al (2019) A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment. RSC Adv 9:31021–31029. https://doi.org/10.1039/C9RA05669F

    Article  CAS  Google Scholar 

  14. León Félix L, Sanz B, Sebastián V et al (2019) Gold-decorated magnetic nanoparticles design for hyperthermia applications and as a potential platform for their surface-functionalization. Sci Rep 9:4185. https://doi.org/10.1038/s41598-019-40769-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saif S, Tahir A, Asim T et al (2019) Polymeric nanocomposites of iron-oxide nanoparticles (IONPs) synthesized using Terminalia chebula leaf extract for enhanced adsorption of arsenic(V) from water. Colloids Interfaces 3:17. https://doi.org/10.3390/colloids3010017

    Article  CAS  Google Scholar 

  16. Kim H-M, Kim D, Jeong C et al (2018) Assembly of plasmonic and magnetic nanoparticles with fluorescent silica shell layer for tri-functional SERS-magnetic-fluorescence probes and its bioapplications. Sci Rep 8:13938. https://doi.org/10.1038/s41598-018-32044-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pershina AG, Sazonov AE, Filimonov VD (2014) Magnetic nanoparticles—DNA interactions: design and applications of nanobiohybrid systems. Russ Chem Rev 83:299–322. https://doi.org/10.1070/RC2014v083n04ABEH004412

    Article  CAS  Google Scholar 

  18. Feng Q, Liu Y, Huang J et al (2018) Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 8:2082. https://doi.org/10.1038/s41598-018-19628-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huerta-Nuñez LFE, Gutierrez-Iglesias G, Martinez-Cuazitl A et al (2019) A biosensor capable of identifying low quantities of breast cancer cells by electrical impedance spectroscopy. Sci Rep 9:6419. https://doi.org/10.1038/s41598-019-42776-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wei Y, Liao R, Mahmood AA et al (2017) pH-responsive pHLIP (pH low insertion peptide) nanoclusters of superparamagnetic iron oxide nanoparticles as a tumor-selective MRI contrast agent. Acta Biomater 55:194–203. https://doi.org/10.1016/j.actbio.2017.03.046

    Article  CAS  PubMed  Google Scholar 

  21. Sahoo SL, Liu C-H (2015) Adsorption behaviors of DNA by modified magnetic nanoparticles: effect of spacer and salt. Colloids Surf A Physicochem Eng Asp 482:184–194. https://doi.org/10.1016/j.colsurfa.2015.05.010

    Article  CAS  Google Scholar 

  22. Haddad Y, Xhaxhiu K, Kopel P et al (2016) The isolation of DNA by polycharged magnetic particles: an analysis of the interaction by zeta potential and particle size. Int J Mol Sci 17:550. https://doi.org/10.3390/ijms17040550

    Article  CAS  PubMed Central  Google Scholar 

  23. Robinson I, Tung LD, Maenosono S et al (2010) Synthesis of core–shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. Nanoscale 2:2624. https://doi.org/10.1039/c0nr00621a

    Article  CAS  PubMed  Google Scholar 

  24. Esmaeili E, Ghiass MA, Vossoughi M, Soleimani M (2017) Hybrid magnetic-DNA directed immobilisation approach for efficient protein capture and detection on microfluidic platforms. Sci Rep 7:194. https://doi.org/10.1038/s41598-017-00268-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun W, Fletcher D, van Heeckeren RC, Davis PB (2012) Non-covalent ligand conjugation to biotinylated DNA nanoparticles using TAT peptide genetically fused to monovalent streptavidin. J Drug Target 20:678–690. https://doi.org/10.3109/1061186X.2012.712128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheon HJ, Lee SM, Kim S-R et al (2018) Colorimetric detection of MPT64 antibody based on an aptamer adsorbed magnetic nanoparticles for diagnosis of tuberculosis. J Nanosci Nanotechnol 19:622–626. https://doi.org/10.1166/jnn.2019.15905

    Article  CAS  Google Scholar 

  27. Ghaemi M, Absalan G (2014) Study on the adsorption of DNA on Fe3O4 nanoparticles and on ionic liquid-modified Fe3O4 nanoparticles. Microchim Acta 181:45–53. https://doi.org/10.1007/s00604-013-1040-5

    Article  CAS  Google Scholar 

  28. Smolders S, Kessels S, Smolders SM-T et al (2018) Magnetofection is superior to other chemical transfection methods in a microglial cell line. J Neurosci Methods 293:169–173. https://doi.org/10.1016/j.jneumeth.2017.09.017

    Article  CAS  PubMed  Google Scholar 

  29. Megías R, Arco M, Ciriza J et al (2017) Design and characterization of a magnetite/PEI multifunctional nanohybrid as non-viral vector and cell isolation system. Int J Pharm 518:270–280. https://doi.org/10.1016/j.ijpharm.2016.12.042

    Article  CAS  PubMed  Google Scholar 

  30. Singh J, Mohanty I, Rattan S (2018) In vivo magnetofection: a novel approach for targeted topical delivery of nucleic acids for rectoanal motility disorders. Am J Physiol Liver Physiol 314:G109–G118. https://doi.org/10.1152/ajpgi.00233.2017

    Article  CAS  Google Scholar 

  31. Wang W, Wang Y, Tu L et al (2015) Magnetoresistive performance and comparison of supermagnetic nanoparticles on giant magnetoresistive sensor-based detection system. Sci Rep 4:5716. https://doi.org/10.1038/srep05716

    Article  CAS  Google Scholar 

  32. Elgqvist J (2017) Nanoparticles as theranostic vehicles in experimental and clinical applications—focus on prostate and breast cancer. Int J Mol Sci 18:1102. https://doi.org/10.3390/ijms18051102

    Article  CAS  PubMed Central  Google Scholar 

  33. Sungsuwan S, Yin Z, Huang X (2015) Lipopeptide-coated iron oxide nanoparticles as potential glycoconjugate-based synthetic anticancer vaccines. ACS Appl Mater Interfaces 7:17535–17544. https://doi.org/10.1021/acsami.5b05497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ernst C, Bartel A, Elferink JW et al (2019) Improved DNA extraction and purification with magnetic nanoparticles for the detection of methicillin-resistant Staphylococcus aureus. Vet Microbiol 230:45–48. https://doi.org/10.1016/j.vetmic.2019.01.009

    Article  CAS  PubMed  Google Scholar 

  35. Sharma A, Goyal AK, Rath G (2018) Recent advances in metal nanoparticles in cancer therapy. J Drug Target 26:617–632. https://doi.org/10.1080/1061186X.2017.1400553

    Article  CAS  PubMed  Google Scholar 

  36. Li S, Tang F, Wang H et al (2018) Au–Ag and Pt–Ag bimetallic nanoparticles@halloysite nanotubes: morphological modulation, improvement of thermal stability and catalytic performance. RSC Adv 8:10237–10245. https://doi.org/10.1039/C8RA00423D

    Article  CAS  Google Scholar 

  37. Mazrouaa AM, Mohamed MG, Fekry M (2019) Physical and magnetic properties of iron oxide nanoparticles with a different molar ratio of ferrous and ferric. Egypt J Pet 28:165–171. https://doi.org/10.1016/j.ejpe.2019.02.002

    Article  Google Scholar 

  38. Smith M, McKeague M, DeRosa MC (2019) Synthesis, transfer, and characterization of core–shell gold-coated magnetic nanoparticles. MethodsX 6:333–354. https://doi.org/10.1016/j.mex.2019.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jishkariani D, Wu Y, Wang D et al (2017) Preparation and self-assembly of dendronized Janus Fe3O4–Pt and Fe3O4–Au heterodimers. ACS Nano 11:7958–7966. https://doi.org/10.1021/acsnano.7b02485

    Article  CAS  PubMed  Google Scholar 

  40. Nikitin A, Khramtsov M, Garanina A et al (2019) Synthesis of iron oxide nanorods for enhanced magnetic hyperthermia. J Magn Magn Mater 469:443–449. https://doi.org/10.1016/j.jmmm.2018.09.014

    Article  CAS  Google Scholar 

  41. Lv YB, Chandrasekharan P, Li Y et al (2018) Magnetic resonance imaging quantification and biodistribution of magnetic nanoparticles using T1-enhanced contrast. J Mater Chem B 6:1470–1478. https://doi.org/10.1039/C7TB03129G

    Article  CAS  Google Scholar 

  42. Hong L, Zhou F, Shi D et al (2017) Portable aptamer biosensor of platelet-derived growth factor-BB using a personal glucose meter with triply amplified. Biosens Bioelectron 95:152–159. https://doi.org/10.1016/j.bios.2017.04.023

    Article  CAS  PubMed  Google Scholar 

  43. Farahbakhsh F, Ahmadi M, Hekmatara SH et al (2019) Improvement of photocatalyst properties of magnetic NPs by new anionic surfactant. Mater Chem Phys 224:279–285. https://doi.org/10.1016/j.matchemphys.2018.11.074

    Article  CAS  Google Scholar 

  44. Ivashchenko O, Peplińska B, Gapiński J et al (2018) Silver and ultrasmall iron oxides nanoparticles in hydrocolloids: effect of magnetic field and temperature on self-organization. Sci Rep 8:4041. https://doi.org/10.1038/s41598-018-22426-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Demangeat E, Pédrot M, Dia A et al (2018) Colloidal and chemical stabilities of iron oxide nanoparticles in aqueous solutions: the interplay of structural, chemical and environmental drivers. Environ Sci Nano 5:992–1001. https://doi.org/10.1039/C7EN01159H

    Article  CAS  Google Scholar 

  46. Gupta R, Sharma D (2019) Biofunctionalization of magnetite nanoparticles with stevioside: effect on the size and thermal behaviour for use in hyperthermia applications. Int J Hyperth 36:302–312. https://doi.org/10.1080/02656736.2019.1565787

    Article  CAS  Google Scholar 

  47. Kurapov YA, Vazhnichaya EM, Litvin SE et al (2019) Physical synthesis of iron oxide nanoparticles and their biological activity in vivo. SN Appl Sci 1:102. https://doi.org/10.1007/s42452-018-0110-z

    Article  CAS  Google Scholar 

  48. Yazdani F, Seddigh M (2016) Magnetite nanoparticles synthesized by co-precipitation method: the effects of various iron anions on specifications. Mater Chem Phys 184:318–323. https://doi.org/10.1016/j.matchemphys.2016.09.058

    Article  CAS  Google Scholar 

  49. Maity D, Choo S-G, Yi J et al (2009) Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J Magn Magn Mater 321:1256–1259. https://doi.org/10.1016/j.jmmm.2008.11.013

    Article  CAS  Google Scholar 

  50. Ansari S, Ficiarà E, Ruffinatti F et al (2019) Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials (Basel) 12:465. https://doi.org/10.3390/ma12030465

    Article  CAS  Google Scholar 

  51. Obayemi JD, Dozie-Nwachukwu S, Danyuo Y et al (2015) Biosynthesis and the conjugation of magnetite nanoparticles with luteinizing hormone releasing hormone (LHRH). Mater Sci Eng C 46:482–496. https://doi.org/10.1016/j.msec.2014.10.081

    Article  CAS  Google Scholar 

  52. Sosa-Acosta J, Silva JA, Fernández-Izquierdo L et al (2018) Iron oxide nanoparticles (IONPs) with potential applications in plasmid DNA isolation. Colloids Surf A Physicochem Eng Asp 545:167–178. https://doi.org/10.1016/j.colsurfa.2018.02.062

    Article  CAS  Google Scholar 

  53. LaGrow AP, Besenhard MO, Hodzic A et al (2019) Unravelling the growth mechanism of the co-precipitation of iron oxide nanoparticles with the aid of synchrotron X-ray diffraction in solution. Nanoscale 11:6620–6628. https://doi.org/10.1039/C9NR00531E

    Article  CAS  PubMed  Google Scholar 

  54. Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110. https://doi.org/10.1021/cr068445e

    Article  CAS  PubMed  Google Scholar 

  55. Lassenberger A, Grünewald TA, van Oostrum PDJ et al (2017) Monodisperse iron oxide nanoparticles by thermal decomposition: elucidating particle formation by second-resolved in situ small-angle X-ray scattering. Chem Mater 29:4511–4522. https://doi.org/10.1021/acs.chemmater.7b01207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cotin G, Kiefer C, Perton F et al (2018) Unravelling the thermal decomposition parameters for the synthesis of anisotropic iron oxide nanoparticles. Nanomaterials 8:881. https://doi.org/10.3390/nano8110881

    Article  CAS  PubMed Central  Google Scholar 

  57. Nam J-H, Joo Y-H, Lee J-H et al (2009) Preparation of NiZn-ferrite nanofibers by electrospinning for DNA separation. J Magn Magn Mater 321:1389–1392. https://doi.org/10.1016/j.jmmm.2009.02.044

    Article  CAS  Google Scholar 

  58. Lee J-H, Huh Y-M, Jun Y et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99. https://doi.org/10.1038/nm1467

    Article  CAS  PubMed  Google Scholar 

  59. Prodělalová J, Rittich B, Španová A et al (2004) Isolation of genomic DNA using magnetic cobalt ferrite and silica particles. J Chromatogr A 1056:43–48. https://doi.org/10.1016/j.chroma.2004.08.090

    Article  CAS  PubMed  Google Scholar 

  60. Zheng J, Hu L, Zhang M et al (2015) An electrochemical sensing strategy for the detection of the hepatitis B virus sequence with homogenous hybridization based on host–guest recognition. RSC Adv 5:92025–92032. https://doi.org/10.1039/C5RA16204A

    Article  CAS  Google Scholar 

  61. Salehiabar M, Nosrati H, Davaran S et al (2018) Facile synthesis and characterization of l-aspartic acid coated iron oxide magnetic nanoparticles (IONPs) for biomedical applications. Drug Res (Stuttg) 68:280–285. https://doi.org/10.1055/s-0043-120197

    Article  CAS  Google Scholar 

  62. Goroncy C, Saloga PEJ, Gruner M et al (2018) Influence of organic ligands on the surface oxidation state and magnetic properties of iron oxide particles. Z Phys Chem 232:819–844. https://doi.org/10.1515/zpch-2017-1084

    Article  CAS  Google Scholar 

  63. Nosrati H, Salehiabar M, Davaran S et al (2018) Methotrexate-conjugated l-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Dev Ind Pharm 44:886–894. https://doi.org/10.1080/03639045.2017.1417422

    Article  CAS  Google Scholar 

  64. Piotrowski P, Krogul-Sobczak A, Kaim A (2019) Magnetic iron oxide nanoparticles functionalized with C60 phosphonic acid derivative for catalytic reduction of 4-nitrophenol. J Environ Chem Eng 7:103147. https://doi.org/10.1016/j.jece.2019.103147

    Article  CAS  Google Scholar 

  65. Xu Y, Qin Y, Palchoudhury S, Bao Y (2011) Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27:8990–8997. https://doi.org/10.1021/la201652h

    Article  CAS  PubMed  Google Scholar 

  66. Sun M, Dai B, Liu K et al (2018) Enhancement in thermal conductivity of polymer composites using aligned diamonds coated with superparamagnetic magnetite. Compos Sci Technol 164:129–135. https://doi.org/10.1016/j.compscitech.2018.05.039

    Article  CAS  Google Scholar 

  67. Fan Q, Guan Y, Zhang Z et al (2019) A new method of synthesis well-dispersion and dense Fe3O4@SiO2 magnetic nanoparticles for DNA extraction. Chem Phys Lett 715:7–13. https://doi.org/10.1016/j.cplett.2018.11.001

    Article  CAS  Google Scholar 

  68. Hufschmid R, Teeman E, Mehdi BL et al (2019) Observing the colloidal stability of iron oxide nanoparticles in situ. Nanoscale 11:13098–13107. https://doi.org/10.1039/C9NR03709H

    Article  CAS  PubMed  Google Scholar 

  69. Schroffenegger M, Reimhult E (2018) Thermoresponsive core–shell nanoparticles: does core size matter? Materials (Basel) 11:1654. https://doi.org/10.3390/ma11091654

    Article  CAS  Google Scholar 

  70. Iriarte-Mesa C, Díaz-Castañón S, Abradelo DG (2019) Facile immobilization of Trametes versicolor laccase on highly monodisperse superparamagnetic iron oxide nanoparticles. Colloids Surf B Biointerfaces 181:470–479. https://doi.org/10.1016/j.colsurfb.2019.05.012

    Article  CAS  PubMed  Google Scholar 

  71. Du L, Wang W, Zhang C et al (2018) A versatile coordinating ligand for coating semiconductor, metal, and metal oxide nanocrystals. Chem Mater 30:7269–7279. https://doi.org/10.1021/acs.chemmater.8b03527

    Article  CAS  Google Scholar 

  72. Veisi H, Razeghi S, Mohammadi P, Hemmati S (2019) Silver nanoparticles decorated on thiol-modified magnetite nanoparticles (Fe3O4/SiO2-Pr-S-Ag) as a recyclable nanocatalyst for degradation of organic dyes. Mater Sci Eng C 97:624–631. https://doi.org/10.1016/j.msec.2018.12.076

    Article  CAS  Google Scholar 

  73. Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S et al (2012) Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull Korean Chem Soc 33:3957–3962. https://doi.org/10.5012/bkcs.2012.33.12.3957

    Article  CAS  Google Scholar 

  74. Nosrati H, Salehiabar M, Davaran S et al (2017) New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Res Chem Intermed 43:7423–7442. https://doi.org/10.1007/s11164-017-3084-3

    Article  CAS  Google Scholar 

  75. Bai Y, Roncancio D, Suo Y et al (2019) A method based on amino-modified magnetic nanoparticles to extract DNA for PCR-based analysis. Colloids Surf B Biointerfaces 179:87–93. https://doi.org/10.1016/j.colsurfb.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  76. Oza G, Krishnajyothi K, Merupo VI et al (2019) Gold-iron oxide yolk-shell nanoparticles (YSNPs) as magnetic probe for fluorescence-based detection of 3 base mismatch DNA. Colloids Surf B Biointerfaces 176:431–438. https://doi.org/10.1016/j.colsurfb.2019.01.016

    Article  CAS  PubMed  Google Scholar 

  77. Chen WD, Kohll AX, Nguyen BH et al (2019) Combining data longevity with high storage capacity—layer-by-layer DNA encapsulated in magnetic nanoparticles. Adv Funct Mater 29:1901672. https://doi.org/10.1002/adfm.201901672

    Article  CAS  Google Scholar 

  78. Wang L, Yao M, Fang X, Yao X (2019) Novel competitive chemiluminescence DNA assay based on Fe3O4@SiO2@Au-functionalized magnetic nanoparticles for sensitive detection of p53 tumor suppressor gene. Appl Biochem Biotechnol 187:152–162. https://doi.org/10.1007/s12010-018-2808-1

    Article  CAS  PubMed  Google Scholar 

  79. Dalmina M, Pittella F, Sierra JA et al (2019) Magnetically responsive hybrid nanoparticles for in vitro siRNA delivery to breast cancer cells. Mater Sci Eng C 99:1182–1190. https://doi.org/10.1016/j.msec.2019.02.026

    Article  CAS  Google Scholar 

  80. Bakshi S, Zakharchenko A, Minko S et al (2019) Towards nanomaterials for cancer theranostics: a system of DNA-modified magnetic nanoparticles for detection and suppression of RNA marker in cancer cells. Magnetochemistry 5:24. https://doi.org/10.3390/magnetochemistry5020024

    Article  CAS  Google Scholar 

  81. Khadsai S, Seeja N, Deepuppha N et al (2018) Poly(acrylic acid)-grafted magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid for specific adsorption with real DNA. Colloids Surf B Biointerfaces 165:243–251. https://doi.org/10.1016/j.colsurfb.2018.02.039

    Article  CAS  PubMed  Google Scholar 

  82. Song J, Lei T, Yang Y et al (2018) Attachment of enzymes to hydrophilic magnetic nanoparticles through DNA-directed immobilization with enhanced stability and catalytic activity. New J Chem 42:8458–8468. https://doi.org/10.1039/C8NJ00426A

    Article  CAS  Google Scholar 

  83. Karami F, Noori-Daloii MR, Omidfar K et al (2018) Modified methylated DNA immunoprecipitation protocol for noninvasive prenatal diagnosis of Down syndrome. J Obstet Gynaecol Res 44:608–613. https://doi.org/10.1111/jog.13577

    Article  CAS  PubMed  Google Scholar 

  84. Ceylan Ş, Odabaşı M (2013) Novel adsorbent for DNA adsorption: Fe3+-attached sporopollenin particles embedded composite cryogels. Artif Cells Nanomed Biotechnol 41:376–383. https://doi.org/10.3109/21691401.2012.759125

    Article  CAS  PubMed  Google Scholar 

  85. Liu B, Liu J (2014) DNA adsorption by magnetic iron oxide nanoparticles and its application for arsenate detection. Chem Commun 50:8568. https://doi.org/10.1039/C4CC03264K

    Article  CAS  Google Scholar 

  86. Guo Y, Wang Y, Li S et al (2017) DNA-spheres decorated with magnetic nanocomposites based on terminal transfer reactions for versatile target detection and cellular targeted drug delivery. Chem Commun 53:4826–4829. https://doi.org/10.1039/C7CC00310B

    Article  CAS  Google Scholar 

  87. Wang H, Yang R, Yang L, Tan W (2009) Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 3:2451–2460. https://doi.org/10.1021/nn9006303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Panda D, Saha P, Das T, Dash J (2017) Target guided synthesis using DNA nano-templates for selectively assembling a G-quadruplex binding c-MYC inhibitor. Nat Commun 8:16103. https://doi.org/10.1038/ncomms16103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stanciu L, Won Y-H, Ganesana M, Andreescu S (2009) Magnetic particle-based hybrid platforms for bioanalytical sensors. Sensors 9:2976–2999. https://doi.org/10.3390/s90402976

    Article  CAS  PubMed  Google Scholar 

  90. Tintoré M, Mazzini S, Polito L et al (2015) Gold-coated superparamagnetic nanoparticles for single methyl discrimination in DNA aptamers. Int J Mol Sci 16:27625–27639. https://doi.org/10.3390/ijms161126046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Slavin S, De Cuendias A, Ladmiral V, Haddleton DM (2011) Biotin functionalized poly(sulfonic acid)s for bioconjugation: in situ binding monitoring by QCM-D. J Polym Sci A Polym Chem 49:1163–1173. https://doi.org/10.1002/pola.24532

    Article  CAS  Google Scholar 

  92. Trigueros Domènech, Toulis Marfany (2019) In vitro gene delivery in retinal pigment epithelium cells by plasmid DNA-wrapped gold nanoparticles. Genes (Basel) 10:289. https://doi.org/10.3390/genes10040289

    Article  CAS  Google Scholar 

  93. Pandit KR, Nanayakkara IA, Cao W et al (2015) Capture and direct amplification of DNA on chitosan microparticles in a single PCR-optimal solution. Anal Chem 87:11022–11029. https://doi.org/10.1021/acs.analchem.5b03006

    Article  CAS  PubMed  Google Scholar 

  94. Liu Y, Li Y, Li X-M, He T (2013) Kinetics of (3-aminopropyl)triethoxylsilane (APTES) silanization of superparamagnetic iron oxide nanoparticles. Langmuir 29:15275–15282. https://doi.org/10.1021/la403269u

    Article  CAS  PubMed  Google Scholar 

  95. Tiwari AP, Satvekar RK, Rohiwal SS et al (2015) Magneto-separation of genomic deoxyribose nucleic acid using pH responsive Fe3O4 @silica@chitosan nanoparticles in biological samples. RSC Adv 5:8463–8470. https://doi.org/10.1039/C4RA15806G

    Article  CAS  Google Scholar 

  96. Bui TQ, Ngo HTM, Tran HT (2018) Surface-protective assistance of ultrasound in synthesis of superparamagnetic magnetite nanoparticles and in preparation of mono-core magnetite-silica nanocomposites. J Sci Adv Mater Devices 3:323–330. https://doi.org/10.1016/j.jsamd.2018.07.002

    Article  Google Scholar 

  97. Li Z, Chen H, Bao H, Gao M (2004) One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem Mater 16:1391–1393. https://doi.org/10.1021/cm035346y

    Article  CAS  Google Scholar 

  98. Byrne SJ, Corr SA, Gun’ko YK et al (2004) Magnetic nanoparticle assemblies on denatured DNA show unusual magnetic relaxivity and potential applications for MRI. Chem Commun 10:2560. https://doi.org/10.1039/b409603g

    Article  CAS  Google Scholar 

  99. Mohamed HDA, Watson SMD, Horrocks BR, Houlton A (2012) Magnetic and conductive magnetite nanowires by DNA-templating. Nanoscale 4:5936. https://doi.org/10.1039/c2nr31559a

    Article  CAS  PubMed  Google Scholar 

  100. Sreenivasulu G, Lochbiler TA, Panda M et al (2016) Self-assembly of multiferroic core–shell particulate nanocomposites through DNA–DNA hybridization and magnetic field directed assembly of superstructures. AIP Adv 6:045202. https://doi.org/10.1063/1.4945761

    Article  CAS  Google Scholar 

  101. Zhu N, Zhang A, He P, Fang Y (2004) DNA hybridization at magnetic nanoparticles with electrochemical stripping detection. Electroanalysis 16:1925–1930. https://doi.org/10.1002/elan.200303028

    Article  CAS  Google Scholar 

  102. Wang F, Shen H, Feng J, Yang H (2006) PNA-modified magnetic nanoparticles and their hybridization with single-stranded DNA target: surface enhanced Raman scatterings study. Microchim Acta 153:15–20. https://doi.org/10.1007/s00604-005-0460-2

    Article  CAS  Google Scholar 

  103. Diamandis EP, Christopoulos TK (1991) The biotin-(strept)avidin system: principles and applications in biotechnology. Clin Chem 37:625–636

    Article  CAS  Google Scholar 

  104. de Freitas CF, Montanha MC, Pellosi DS et al (2019) Biotin-targeted mixed liposomes: a smart strategy for selective release of a photosensitizer agent in cancer cells. Mater Sci Eng C 104:109923. https://doi.org/10.1016/j.msec.2019.109923

    Article  CAS  Google Scholar 

  105. Cannon B, Campos AR, Lewitz Z et al (2012) Zeptomole detection of DNA nanoparticles by single-molecule fluorescence with magnetic field-directed localization. Anal Biochem 431:40–47. https://doi.org/10.1016/j.ab.2012.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. He N, Wang F, Ma C et al (2013) Chemiluminescence analysis for HBV-DNA hybridization detection with magnetic nanoparticles based DNA extraction from positive whole blood samples. J Biomed Nanotechnol 9:267–273. https://doi.org/10.1166/jbn.2013.1478

    Article  CAS  PubMed  Google Scholar 

  107. Oberacker P, Stepper P, Bond DM et al (2019) Bio-On-Magnetic-Beads (BOMB): open platform for high-throughput nucleic acid extraction and manipulation. PLoS Biol 17:e3000107. https://doi.org/10.1371/journal.pbio.3000107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat Protoc 1:581–585. https://doi.org/10.1038/nprot.2006.83

    Article  CAS  PubMed  Google Scholar 

  109. Delaney S, Murphy R, Walsh F (2018) A comparison of methods for the extraction of plasmids capable of conferring antibiotic resistance in a human pathogen from complex broiler cecal samples. Front Microbiol 9:1731. https://doi.org/10.3389/fmicb.2018.01731

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sermwittayawong D, Jakkawanpitak C, Waji N, Hutadilok-Towatana N (2013) Economical method for midiprep plasmid DNA purification using diatomaceous earth. ScienceAsia 39:631. https://doi.org/10.2306/scienceasia1513-1874.2013.39.631

    Article  CAS  Google Scholar 

  111. Bai Y, Cui Y, Suo Y et al (2019) A rapid method for detection of salmonella in milk based on extraction of mRNA using magnetic capture probes and RT-qPCR. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00770

    Article  PubMed  PubMed Central  Google Scholar 

  112. Griffiths L, Chacon-Cortes D (2014) Methods for extracting genomic DNA from whole blood samples: current perspectives. J Biorepository Sci Appl Med 2:1. https://doi.org/10.2147/BSAM.S46573

    Article  Google Scholar 

  113. Di Pietro F, Ortenzi F, Tilio M et al (2011) Genomic DNA extraction from whole blood stored from 15- to 30-years at −20°C by rapid phenol–chloroform protocol: a useful tool for genetic epidemiology studies. Mol Cell Probes 25:44–48. https://doi.org/10.1016/j.mcp.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  114. Neng-Biao W, Lian X, Li-na C et al (2009) Isolation and purification of plasmid D NA by silica-coated magnetic nanoparticles. Chin J Biochem Mol Biol 25:958–962

    Google Scholar 

  115. Köse K (2016) Nucleotide incorporated magnetic microparticles for isolation of DNA. Process Biochem 51:1644–1649. https://doi.org/10.1016/j.procbio.2016.07.021

    Article  CAS  Google Scholar 

  116. Berensmeier S (2006) Magnetic particles for the separation and purification of nucleic acids. Appl Microbiol Biotechnol 73:495–504. https://doi.org/10.1007/s00253-006-0675-0

    Article  CAS  PubMed  Google Scholar 

  117. Tanaka T, Sakai R, Kobayashi R et al (2009) Contributions of phosphate to DNA adsorption/desorption behaviors on aminosilane-modified magnetic nanoparticles. Langmuir 25:2956–2961. https://doi.org/10.1021/la8032397

    Article  CAS  PubMed  Google Scholar 

  118. Min JH, Woo M-K, Yoon HY et al (2014) Isolation of DNA using magnetic nanoparticles coated with dimercaptosuccinic acid. Anal Biochem 447:114–118. https://doi.org/10.1016/j.ab.2013.11.018

    Article  CAS  PubMed  Google Scholar 

  119. Smerkova K, Dostalova S, Vaculovicova M et al (2013) Investigation of interaction between magnetic silica particles and lambda phage DNA fragment. J Pharm Biomed Anal 86:65–72. https://doi.org/10.1016/j.jpba.2013.07.039

    Article  CAS  PubMed  Google Scholar 

  120. Saiyed ZM, Bochiwal C, Gorasia H et al (2006) Application of magnetic particles (Fe3O4) for isolation of genomic DNA from mammalian cells. Anal Biochem 356:306–308. https://doi.org/10.1016/j.ab.2006.06.027

    Article  CAS  PubMed  Google Scholar 

  121. Gessner I, Yu X, Jüngst C et al (2019) Selective capture and purification of microRNAs and intracellular proteins through antisense-vectorized magnetic nanobeads. Sci Rep 9:2069. https://doi.org/10.1038/s41598-019-39575-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pang KM, Castanotto D, Li H et al (2018) Incorporation of aptamers in the terminal loop of shRNAs yields an effective and novel combinatorial targeting strategy. Nucleic Acids Res 46:e6–e6. https://doi.org/10.1093/nar/gkx980

    Article  CAS  PubMed  Google Scholar 

  123. Kaplitt MG, Feigin A, Tang C et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369:2097–2105. https://doi.org/10.1016/S0140-6736(07)60982-9

    Article  CAS  PubMed  Google Scholar 

  124. Katada Y, Kobayashi K, Tsubota K, Kurihara T (2019) Evaluation of AAV-DJ vector for retinal gene therapy. PeerJ 7:e6317. https://doi.org/10.7717/peerj.6317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yao J, Rotenberg D, Whitfield AE (2019) Delivery of maize mosaic virus to planthopper vectors by microinjection increases infection efficiency and facilitates functional genomics experiments in the vector. J Virol Methods 270:153–162. https://doi.org/10.1016/j.jviromet.2019.05.010

    Article  CAS  PubMed  Google Scholar 

  126. Forjanic T, Markelc B, Marcan M et al (2019) Electroporation-induced stress response and its effect on gene electrotransfer efficacy. In vivo imaging and numerical modeling. IEEE Trans Biomed Eng 66:2671–2683. https://doi.org/10.1109/TBME.2019.2894659

    Article  PubMed  Google Scholar 

  127. Schmitt MA, Friedrich O, Gilbert DF (2019) Portoporator©: a portable low-cost electroporation device for gene transfer to cultured cells in biotechnology, biomedical research and education. Biosens Bioelectron 131:95–103. https://doi.org/10.1016/j.bios.2019.02.024

    Article  CAS  PubMed  Google Scholar 

  128. Kasala D, Yoon A-R, Hong J et al (2016) Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine 11:1689–1713. https://doi.org/10.2217/nnm-2016-0060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pinyon JL, Klugmann M, Lovell NH, Housley GD (2019) Dual-plasmid bionic array-directed gene electrotransfer in HEK293 cells and cochlear mesenchymal cells probes transgene expression and cell fate. Hum Gene Ther 30:211–224. https://doi.org/10.1089/hum.2018.062

    Article  CAS  PubMed  Google Scholar 

  130. Durymanov M, Reineke J (2018) Non-viral delivery of nucleic acids: insight into mechanisms of overcoming intracellular barriers. Front Pharmacol 9:1–15. https://doi.org/10.3389/fphar.2018.00971

    Article  CAS  Google Scholar 

  131. Hardee C, Arévalo-Soliz L, Hornstein B, Zechiedrich L (2017) Advances in non-viral DNA vectors for gene therapy. Genes (Basel) 8:65. https://doi.org/10.3390/genes8020065

    Article  CAS  Google Scholar 

  132. González B, Ruiz-Hernández E, Feito MJ et al (2011) Covalently bonded dendrimer-maghemite nanosystems: nonviral vectors for in vitro gene magnetofection. J Mater Chem 21:4598. https://doi.org/10.1039/c0jm03526b

    Article  CAS  Google Scholar 

  133. Sohrabijam Z, Saeidifar M, Zamanian A (2017) Enhancement of magnetofection efficiency using chitosan coated superparamagnetic iron oxide nanoparticles and calf thymus DNA. Colloids Surf B Biointerfaces 152:169–175. https://doi.org/10.1016/j.colsurfb.2017.01.028

    Article  CAS  PubMed  Google Scholar 

  134. Cen C, Wu J, Zhang Y et al (2019) Improving magnetofection of magnetic polyethylenimine nanoparticles into MG-63 osteoblasts using a novel uniform magnetic field. Nanoscale Res Lett 14:90. https://doi.org/10.1186/s11671-019-2882-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Govindarajan S, Kitaura K, Takafuji M et al (2013) Gene delivery into human cancer cells by cationic lipid-mediated magnetofection. Int J Pharm 446:87–99. https://doi.org/10.1016/j.ijpharm.2013.01.055

    Article  CAS  PubMed  Google Scholar 

  136. Mu X, Li J, Yan S et al (2018) siRNA delivery with stem cell membrane-coated magnetic nanoparticles for imaging-guided photothermal therapy and gene therapy. ACS Biomater Sci Eng 4:3895–3905. https://doi.org/10.1021/acsbiomaterials.8b00858

    Article  CAS  Google Scholar 

  137. Namgung R, Singha K, Yu MK et al (2010) Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials 31:4204–4213. https://doi.org/10.1016/j.biomaterials.2010.01.123

    Article  CAS  PubMed  Google Scholar 

  138. Kami D, Takeda S, Makino H et al (2011) Efficient transfection method using deacylated polyethylenimine-coated magnetic nanoparticles. J Artif Organs 14:215–222. https://doi.org/10.1007/s10047-011-0568-6

    Article  CAS  PubMed  Google Scholar 

  139. Wu H-C, Wang T-W, Bohn MC et al (2010) Novel magnetic hydroxyapatite nanoparticles as non-viral vectors for the glial cell line-derived neurotrophic factor gene. Adv Funct Mater 20:67–77. https://doi.org/10.1002/adfm.200901108

    Article  CAS  Google Scholar 

  140. Prijic S, Prosen L, Cemazar M et al (2012) Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials 33:4379–4391. https://doi.org/10.1016/j.biomaterials.2012.02.061

    Article  CAS  PubMed  Google Scholar 

  141. Veiseh O, Kievit FM, Gunn JW et al (2009) A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials 30:649–657. https://doi.org/10.1016/j.biomaterials.2008.10.003

    Article  CAS  PubMed  Google Scholar 

  142. Castillo B, Bromberg L, López X et al (2012) Intracellular delivery of siRNA by polycationic superparamagnetic nanoparticles. J Drug Deliv 2012:1–12. https://doi.org/10.1155/2012/218940

    Article  CAS  Google Scholar 

  143. Kievit FM, Veiseh O, Bhattarai N et al (2009) PEI–PEG–chitosan–copolymer-coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv Funct Mater 19:2244–2251. https://doi.org/10.1002/adfm.200801844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mykhaylyk O, Antequera YS, Vlaskou D, Plank C (2007) Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc 2:2391–2411. https://doi.org/10.1038/nprot.2007.352

    Article  CAS  PubMed  Google Scholar 

  145. Gulce-Iz S, Saglam-Metiner P (2019) Current state of the art in DNA vaccine delivery and molecular adjuvants: Bcl-xL anti-apoptotic protein as a molecular adjuvant. In: Immune response activation and immunomodulation. IntechOpen. https://doi.org/10.5772/intechopen.82203

    Google Scholar 

  146. Boxus M, Tignon M, Roels S et al (2007) DNA immunization with plasmids encoding fusion and nucleocapsid proteins of bovine respiratory syncytial virus induces a strong cell-mediated immunity and protects calves against challenge. J Virol 81:6879–6889. https://doi.org/10.1128/JVI.00502-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Al-Deen FN, Ho J, Selomulya C et al (2011) Superparamagnetic nanoparticles for effective delivery of malaria DNA vaccine. Langmuir 27:3703–3712. https://doi.org/10.1021/la104479c

    Article  CAS  PubMed  Google Scholar 

  148. Garu A, Moku G, Gulla SK, Chaudhuri A (2016) Genetic immunization with in vivo dendritic cell-targeting liposomal DNA vaccine carrier induces long-lasting antitumor immune response. Mol Ther 24:385–397. https://doi.org/10.1038/mt.2015.215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308. https://doi.org/10.1038/nbt0396-303

    Article  CAS  PubMed  Google Scholar 

  150. Liu H, Li S, Tian L et al (2010) A novel single nucleotide polymorphisms detection sensors based on magnetic nanoparticles array and dual-color single base extension. J Nanosci Nanotechnol 10:5311–5315. https://doi.org/10.1166/jnn.2010.2386

    Article  CAS  PubMed  Google Scholar 

  151. Lapitan LDS, Xu Y, Guo Y, Zhou D (2019) Combining magnetic nanoparticle capture and poly-enzyme nanobead amplification for ultrasensitive detection and discrimination of DNA single nucleotide polymorphisms. Nanoscale 11:1195–1204. https://doi.org/10.1039/C8NR07641C

    Article  CAS  PubMed  Google Scholar 

  152. Lee M-H, Leu C-C, Lin C-C et al (2019) Gold-decorated magnetic nanoparticles modified with hairpin-shaped DNA for fluorometric discrimination of single-base mismatch DNA. Microchim Acta 186:80. https://doi.org/10.1007/s00604-018-3192-9

    Article  CAS  Google Scholar 

  153. Sharma R, Akshath US, Bhatt P, Raghavarao K (2019) Fluorescent aptaswitch for chloramphenicol detection—quantification enabled by immobilization of aptamer. Sens Actuators B Chem 290:110–117. https://doi.org/10.1016/j.snb.2019.03.093

    Article  CAS  Google Scholar 

  154. Xuhong Y, Sinong Z, Jianping L et al (2019) A PCR-lateral flow assay system based on gold magnetic nanoparticles for CYP2C19 genotyping and its clinical applications. Artif Cells Nanomed Biotechnol 47:636–643. https://doi.org/10.1080/21691401.2019.1575841

    Article  CAS  PubMed  Google Scholar 

  155. Cheng H, Liu J, Ma W et al (2018) Low background cascade signal amplification electrochemical sensing platform for tumor-related mRNA quantification by target-activated hybridization chain reaction and electroactive cargo release. Anal Chem 90:12544–12552. https://doi.org/10.1021/acs.analchem.8b02470

    Article  CAS  PubMed  Google Scholar 

  156. Shan Y, Zhang Y, Kang W et al (2019) Quantitative and selective DNA detection with portable personal glucose meter using loop-based DNA competitive hybridization strategy. Sens Actuators B Chem 282:197–203. https://doi.org/10.1016/j.snb.2018.11.062

    Article  CAS  Google Scholar 

  157. Tian B, Qiu Z, Ma J et al (2018) On-particle rolling circle amplification-based core–satellite magnetic superstructures for microRNA detection. ACS Appl Mater Interfaces 10(3):2957–2964. https://doi.org/10.1021/acsami.7b16293

    Article  CAS  PubMed  Google Scholar 

  158. Li W, Jiang W, Dai S, Wang L (2016) Multiplexed detection of cytokines based on dual bar-code strategy and single-molecule counting. Anal Chem 88:1578–1584. https://doi.org/10.1021/acs.analchem.5b03043

    Article  CAS  PubMed  Google Scholar 

  159. Xu Y, Huo B, Li C et al (2019) Ultrasensitive detection of staphylococcal enterotoxin B in foodstuff through dual signal amplification by bio-barcode and real-time PCR. Food Chem 283:338–344. https://doi.org/10.1016/j.foodchem.2018.12.128

    Article  CAS  PubMed  Google Scholar 

  160. Jiang P, Haji C, Ye X et al (2019) A novel inductive coupled plasma mass spectrometry gene detection method based on AuNPs and bio-barcode signal amplification. Nanosci Nanotechnol Lett 11:638–644. https://doi.org/10.1166/nnl.2019.2933

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia M. Díaz-García.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Surface-modified Nanobiomaterials for Electrochemical and Biomedicine Applications”; edited by “Alain R. Puente-Santiago, Daily Rodríguez-Padrón”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosa-Acosta, J.R., Iriarte-Mesa, C., Ortega, G.A. et al. DNA–Iron Oxide Nanoparticles Conjugates: Functional Magnetic Nanoplatforms in Biomedical Applications. Top Curr Chem (Z) 378, 13 (2020). https://doi.org/10.1007/s41061-019-0277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-019-0277-9

Keywords

Navigation