Skip to main content
Log in

Towards Accurate Simulation of Two-Dimensional Electronic Spectroscopy

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

We introduce the basic concepts of two-dimensional electronic spectroscopy (2DES) and a general theoretical framework adopted to calculate, from first principles, the nonlinear response of multi-chromophoric systems in realistic environments. Specifically, we focus on UV-active chromophores representing the building blocks of biological systems, from proteins to nucleic acids, describing our progress in developing computational tools and protocols for accurate simulation of their 2DUV spectra. The roadmap for accurate 2DUV spectroscopy simulations is illustrated starting with benchmarking of the excited-state manifold of the chromophoric units in a vacuum, which can be used for building exciton Hamiltonians for large-scale applications or as a reference for first-principles simulations with reduced computational cost, enabling treatment of minimal (still realistic) multi-chromophoric model systems. By adopting a static approximation that neglects dynamic processes such as spectral diffusion and population transfer, we show how 2DUV is able to characterize the ground-state conformational space of dinucleosides and small peptides comprising dimeric chromophoric units (in their native environment) by tracking inter-chromophoric electronic couplings. Recovering the excited-state coherent vibrational dynamics and population transfers, we observe a remarkable agreement between the predicted 2DUV spectra of the pyrene molecule and the experimental results. These results further led to theoretical studies of the excited-state dynamics in a solvated dinucleoside system, showing that spectroscopic fingerprints of long-lived excited-state minima along the complex photoinduced decay pathways of DNA/RNA model systems can be simulated at a reasonable computational cost. Our results exemplify the impact of accurate simulation of 2DES spectra in revealing complex physicochemical properties of fundamental biological systems and should trigger further theoretical developments as well as new experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced from data reported in Ref. [58]

Fig. 5

Reproduced from data reported in Ref. [53]

Fig. 6

Reproduced from data reported in Ref. [59]

Fig. 7

Reproduced from data reported in Ref. [57]

Fig. 8

Reproduced from data reported in Ref. [58]

Fig. 9

Reproduced from data reported in Ref. [58]

Fig. 10

Reproduced from data reported in Ref. [37]

Fig. 11

Reproduced from data reported in Ref. [82]

Fig. 12

Reproduced from data reported in Ref. [54]

Fig. 13

Reproduced from data reported in Ref. [61]

Fig. 14

Reproduced from data reported in Ref. [93]

Fig. 15

Reproduced from data reported in Ref. [93]

Fig. 16

Reproduced from data reported in Ref. [60]

Similar content being viewed by others

References

  1. Aue WP, Bartholdi E, Ernst RR (1976) 2-dimensional spectroscopy - application to nuclear magnetic-resonance. J Chem Phys 64(5):2229–2246

    Article  CAS  Google Scholar 

  2. Mukamel S (1995) Principles of nonlinear optical spectroscopy. O.U.P, New York

    Google Scholar 

  3. Zanni MT, Hochstrasser RM (2001) Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures. Curr Opin Struct Biol 11(5):516–522

    Article  CAS  PubMed  Google Scholar 

  4. Jonas DM (2003) Two-dimensional femtosecond spectroscopy. Annu Rev Phys Chem 54:425–463

    Article  CAS  PubMed  Google Scholar 

  5. Cowan ML, Ogilvie JP, Miller RJD (2004) Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes. Chem Phys Lett 386(1–3):184–189

    Article  CAS  Google Scholar 

  6. Brixner T, Mancal T, Stiopkin IV, Fleming GR (2004) Phase-stabilized two-dimensional electronic spectroscopy. J Chem Phys 121(9):4221–4236

    Article  CAS  PubMed  Google Scholar 

  7. Brixner T, Stenger J, Vaswani HM, Cho M, Blankenship RE, Fleming GR (2005) Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434(7033):625–628

    Article  CAS  PubMed  Google Scholar 

  8. Collini E, Wong CY, Wilk KE, Curmi PMG, Brumer P, Scholes GD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463(7281):644–U669

    Article  CAS  PubMed  Google Scholar 

  9. Mukamel S, Abramavicius D, Yang L, Zhuang W, Schweigert IV, Voronine DV (2009) Coherent multidimensional optical probes for electron correlations and exciton dynamics: from nmr to x-rays. Acc Chem Res 42(4):553–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mukamel S, Bakker HJ (2015) Preface: special topic on multidimensional spectroscopy. J Chem Phys 142(21):212101

    Article  CAS  PubMed  Google Scholar 

  11. Fuller FD, Ogilvie JP (2015) Experimental implementations of two-dimensional Fourier transform electronic spectroscopy. Annu Rev Phys Chem 66(66):667–690

    Article  CAS  PubMed  Google Scholar 

  12. Selig U, Schleussner C-F, Foerster M, Langhojer F, Nuernberger P, Brixner T (2010) Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry. Opt Lett 35(24):4178–4180

    Article  PubMed  Google Scholar 

  13. C-h Tseng, Matsika S, Weinacht TC (2009) Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet. Opt Express 17(21):18788–18793

    Article  CAS  Google Scholar 

  14. Varillas RB, Candeo A, Viola D, Garavelli M, De Silvestri S, Cerullo G, Manzoni C (2014) Microjoule-level, tunable sub-10 fs UV pulses by broadband sum-frequency generation. Opt Lett 39(13):3849–3852

    Article  PubMed  Google Scholar 

  15. Borrego-Varillas R, Oriana A, Ganzer L, Trifonov A, Buchvarov I, Manzoni C, Cerullo G (2016) Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line. Opt Express 24(25):28491–28499

    Article  CAS  PubMed  Google Scholar 

  16. Krebs N, Pugliesi I, Hauer J, Riedle E (2013) Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe. N J Phys 15(8):085016

    Article  CAS  Google Scholar 

  17. Baum P, Lochbrunner S, Riedle E (2004) Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling. Opt Lett 29(14):1686–1688

    Article  CAS  PubMed  Google Scholar 

  18. Prokhorenko VI, Picchiotti A, Maneshi S, Miller RJD (2015) Broadband electronic two-dimensional spectroscopy in the deep UV. Ultrafast Phenom Xix 162:432–435

    CAS  Google Scholar 

  19. Tseng C-H, Sandor P, Kotur M, Weinacht TC, Matsika S (2012) Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV. J Phys Chem A 116(11):2654–2661

    Article  CAS  PubMed  Google Scholar 

  20. West BA, Womick JM, Moran AM (2011) Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies. J Phys Chem A 115(31):8630–8637

    Article  CAS  PubMed  Google Scholar 

  21. West BA, Moran AM (2012) Two-dimensional electronic spectroscopy in the ultraviolet wavelength range. J Phys Chem Lett 3(18):2575–2581

    Article  CAS  PubMed  Google Scholar 

  22. Prokhorenko VI, Picchiotti A, Pola M, Dijkstra AG, Miller RJD (2016) New insights into the photophysics of DNA nucleobases. J Phys Chem Lett 7(22):4445–4450

    Article  CAS  PubMed  Google Scholar 

  23. Jiang J, Mukamel S (2011) Two-dimensional near-ultraviolet spectroscopy of aromatic residues in amyloid fibrils: a first principles study. Phys Chem Chem Phys 13(6):2394–2400

    Article  CAS  PubMed  Google Scholar 

  24. Jiang J, Golchert KJ, Kingsley CN, Brubaker WD, Martin RW, Mukamel S (2013) Exploring the aggregation propensity of gamma s-crystallin protein variants using two-dimensional spectroscopic tools. J Phys Chem B 117(46):14294–14301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oliver TAA, Lewis NHC, Fleming GR (2014) Correlating the motion of electrons and nuclei with two-dimensional electronic–vibrational spectroscopy. Proc Natl Acad Sci 111(28):10061–10066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Loukianov A, Niedringhaus A, Berg B, Pan J, Senlik SS, Ogilvie JP (2017) Two-dimensional electronic Stark spectroscopy. J Phys Chem Lett 8(3):679–683

    Article  CAS  PubMed  Google Scholar 

  27. Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S (2017) Simulating coherent multidimensional spectroscopy of nonadiabatic molecular processes: from the infrared to the x-ray regime. Chem Rev 117(19):12165–12226

    Article  CAS  PubMed  Google Scholar 

  28. Scholes GD, Fleming GR, Chen LX, Aspuru-Guzik A, Buchleitner A, Coker DF, Engel GS, van Grondelle R, Ishizaki A, Jonas DM, Lundeen JS, McCusker JK, Mukamel S, Ogilvie JP, Olaya-Castro A, Ratner MA, Spano FC, Whaley KB, Zhu XY (2017) Using coherence to enhance function in chemical and biophysical systems. Nature 543(7647):647–656

    Article  CAS  PubMed  Google Scholar 

  29. Mukamel S (2000) Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu Rev Phys Chem 51:691–729

    Article  CAS  PubMed  Google Scholar 

  30. Brixner T, Stiopkin IV, Fleming GR (2004) Tunable two-dimensional femtosecond spectroscopy. Opt Lett 29(8):884–886

    Article  CAS  PubMed  Google Scholar 

  31. Tian P, Keusters D, Suzaki Y, Warren WS (2003) Femtosecond phase-coherent two-dimensional spectroscopy. Science 300(5625):1553–1555

    Article  CAS  PubMed  Google Scholar 

  32. Grumstrup EM, Shim S-H, Montgomery MA, Damrauer NH, Zanni MT (2007) Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology. Opt Express 15(25):16681–16689

    Article  PubMed  Google Scholar 

  33. Maiuri M, Brazard J (2018) Electronic couplings in (bio-) chemical processes. Top Curr Chem 376(2):10

    Article  CAS  Google Scholar 

  34. Brańczyk AM, Turner DB, Scholes GD (2014) Crossing disciplines - a view on two-dimensional optical spectroscopy. Ann der Phys 526(1–2):31–49

    Article  CAS  Google Scholar 

  35. Son M, Schlau-Cohen GS (2017) Ultrabroadband 2D electronic spectroscopy as a tool for direct visualization of pathways of energy flow. Proc SPIE 10(1117/1112):2273417

    Google Scholar 

  36. Abramavicius D, Palmieri B, Voronine DV, Sanda F, Mukamel S (2009) Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle versus supermolecule perspectives. Chem Rev 109(6):2350–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nenov A, Rivalta I, Cerullo G, Mukamel S, Garavelli M (2014) Disentangling peptide configurations via two-dimensional electronic spectroscopy: Ab initio simulations beyond the Frenkel exciton Hamiltonian. J Phys Chem Lett 5(4):767–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Johnson PJM, Farag MH, Halpin A, Morizumi T, Prokhorenko VI, Knoester J, Jansen TLC, Ernst OP, Miller RJD (2017) The primary photochemistry of vision occurs at the molecular speed limit. J Phys Chem B 121(16):4040–4047

    Article  CAS  PubMed  Google Scholar 

  39. Bruggemann B, Persson P, Meyer HD, Maya V (2008) Frequency dispersed transient absorption spectra of dissolved perylene: A case study using the density matrix version of the MCTDH method. Chem Phys 347(1–3):152–165

    Article  CAS  Google Scholar 

  40. Sanda F, Mukamel S (2008) Stochastic Liouville equations for coherent multidimensional spectroscopy of excitons. J Phys Chem B 112(45):14212–14220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tanimura Y (2006) Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems. J Phys Soc Jpn 75(8):082001

    Article  CAS  Google Scholar 

  42. Zimmermann T, Vanicek J (2014) Efficient on-the-fly ab initio semiclassical method for computing time-resolved nonadiabatic electronic spectra with surface hopping or Ehrenfest dynamics. J Chem Phys 141(13):134102

    Article  CAS  PubMed  Google Scholar 

  43. Tempelaar R, van der Vegte CP, Knoester J, Jansen TLC (2013) Surface hopping modeling of two-dimensional spectra. J Chem Phys 138(16):164106

    Article  CAS  PubMed  Google Scholar 

  44. Richter M, Fingerhut BP (2016) Simulation of multi-dimensional signals in the optical domain: quantum-classical feedback in nonlinear exciton propagation. J Chem Theory Comput 12(7):3284–3294

    Article  CAS  PubMed  Google Scholar 

  45. Petit AS, Subotnik JE (2014) Calculating time-resolved differential absorbance spectra for ultrafast pump-probe experiments with surface hopping trajectories. J Chem Phys 141(15):154108

    Article  CAS  PubMed  Google Scholar 

  46. Mukamel S (1983) Non-impact unified theory of 4-wave mixing and 2-photon processes. Phys Rev A 28(6):3480–3492

    Article  CAS  Google Scholar 

  47. Abramavicius D, Valkunas L, Mukamel S (2007) Transport and correlated fluctuations in the nonlinear optical response of excitons. Epl 80(1):17005

    Article  CAS  Google Scholar 

  48. Jiang J, Mukamel S (2010) Two-dimensional ultraviolet (2DUV) spectroscopic tools for identifying fibrillation propensity of protein residue sequences. Angew Chem Int Ed 49(50):9666–9669

    Article  CAS  Google Scholar 

  49. Stuhldreier MC, Temps F (2013) Ultrafast photo-initiated molecular quantum dynamics in the DNA dinucleotide d(apg) revealed by broadband transient absorption spectroscopy. Faraday Discuss 163:173–188; discussion 243–175

  50. Ostroumov EE, Mulvaney RM, Cogdell RJ, Scholes GD (2013) Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria. Science 340(6128):52–56

    Article  CAS  PubMed  Google Scholar 

  51. Dean JC, Rafiq S, Oblinsky DG, Cassette E, Jumper CC, Scholes GD (2015) Broadband transient absorption and two-dimensional electronic spectroscopy of methylene blue. J Phys Chem A 119(34):9098–9108

    Article  CAS  PubMed  Google Scholar 

  52. Rivalta I, Nenov A, Cerullo G, Mukamel S, Garavelli M (2014) Ab initio simulations of two-dimensional electronic spectra: The SOS//QM/MM approach. Int J Quantum Chem 114(2):85–93

    Article  CAS  Google Scholar 

  53. Nenov A, Rivalta I, Mukamel S, Garavelli M (2014) Bidimensional electronic spectroscopy on indole in gas phase and in water from first principles. Comput Theor Chem 1040:295–303

    Article  CAS  Google Scholar 

  54. Nenov A, Beccara SA, Rivalta I, Cerullo G, Mukamel S, Garavelli M (2014) Tracking conformational dynamics of polypeptides by nonlinear electronic spectroscopy of aromatic residues: a first-principles simulation study. ChemPhysChem 15(15):3282–3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nenov A, Segarra-Marti J, Giussani A, Conti A, Rivalta I, Dumont E, Jaiswal VK, Altavilla SF, Mukamel S, Garavelli M (2015) Probing deactivation pathways of DNA nucleobases by two-dimensional electronic spectroscopy: First principles simulations. Faraday Discuss 177:345–362

    Article  CAS  PubMed  Google Scholar 

  56. Rivalta I, Nenov A, Weingart O, Cerullo G, Garavelli M, Mukamel S (2014) Modelling time-resolved two-dimensional electronic spectroscopy of the primary photoisomerization event in rhodopsin. J Phys Chem B 118(28):8396–8405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nenov A, Giussani A, Segarra-Martí J, Jaiswal VK, Rivalta I, Cerullo G, Mukamel S, Garavelli M (2015) Modeling the high-energy electronic state manifold of adenine: calibration for nonlinear electronic spectroscopy. J Chem Phys 142(21):212443

    Article  CAS  PubMed  Google Scholar 

  58. Nenov A, Mukamel S, Garavelli M, Rivalta I (2015) Two-dimensional electronic spectroscopy of benzene, phenol, and their dimer: an efficient first-principles simulation protocol. J Chem Theory Comput 11(8):3755–3771

    Article  CAS  PubMed  Google Scholar 

  59. Giussani A, Segarra-Martí J, Nenov A, Rivalta I, Tolomelli A, Mukamel S, Garavelli M (2016) Spectroscopic fingerprints of DNA/RNA pyrimidine nucleobases in third-order nonlinear electronic spectra. Theor Chem Acc 135(5):1–18

    Article  CAS  Google Scholar 

  60. Li Q, Giussani A, Segarra-Martí J, Nenov A, Rivalta I, Voityuk AA, Mukamel S, Roca-Sanjuán D, Garavelli M, Blancafort L (2016) Multiple decay mechanisms and 2D-UV spectroscopic fingerprints of singlet excited solvated adenine-uracil monophosphate. Chem—A Eur J 22(22):7497–7507

    Article  CAS  Google Scholar 

  61. Segarra-Marti J, Jaiswal VK, Pepino AJ, Giussani A, Nenov A, Mukamel S, Garavelli M, Rivalta I (2018) Two-dimensional electronic spectroscopy as a tool for tracking molecular conformations in DNA/RNA aggregates. Faraday Discuss 207:233–250  

    Article  Google Scholar 

  62. Kim J, Mukamel S, Scholes GD (2009) Two-dimensional electronic double-quantum coherence spectroscopy. Acc Chem Res 42(9):1375–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li Z, Abrarnavicius D, Mukamel S (2008) Probing electron correlations in molecules by two-dimensional coherent optical spectroscopy. J Am Chem Soc 130(11):3509–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Roos BO (1987) The complete active space self-consistent field method and its applications in electronic structure calculations. Adv Chemical Phys. https://doi.org/10.1002/9780470142943.ch7

    Article  Google Scholar 

  65. Andersson K, Malmqvist PA, Roos BO, Sadlej AJ, Wolinski K (1990) 2nd-order perturbation-theory with a casscf reference function. J Phys Chem 94(14):5483–5488

    Article  CAS  Google Scholar 

  66. Roca-Sanjuán D, Aquilante F, Lindh R (2012) Multiconfiguration second-order perturbation theory approach to strong electron correlation in chemistry and photochemistry. Wiley Interdiscip Rev-Comput Mol Sci 2(4):585–603

    Article  CAS  Google Scholar 

  67. Malmqvist PA, Rendell A, Roos BO (1990) The restricted active space self-consistent-field method, implemented with a split graph unitary-group approach. J Phys Chem 94(14):5477–5482

    Article  CAS  Google Scholar 

  68. Aquilante F, Lindh R, Pedersen TB (2007) Unbiased auxiliary basis sets for accurate two-electron integral approximations. J Chem Phys 127(11):114107

    Article  CAS  PubMed  Google Scholar 

  69. Aquilante F, Autschbach J, Carlson R, Chibotaru L, Delcey MG, De Vico L, Fernández Galvan I, Ferré N, Frutos LM, Gagliardi L, Garavelli M, Giussani A, Hoyer C, Li Manni G, Lischka H, Ma D, Malmqvist PA, Müller T, Nenov A, Olivucci M, Pedersen TB, Peng D, Plasser F, Pritchard B, Reiher M, Rivalta I, Schapiro I, Segarra-Martí J, Stenrup M, Truhlar DG, Ungur L, Valentini A, Vancoillie S, Veryazov V, Vysotskiy V, Weingart O, Zapata F, Lindh R (2016) Molcas 8: new capabilities for multiconfigurational quantum chemical calculations across the periodic table. J Comput Chem 37(5):506–541

    Article  CAS  PubMed  Google Scholar 

  70. Avila Ferrer FJ, Cerezo J, Stendardo E, Improta R, Santoro F (2013) Insights for an accurate comparison of computational data to experimental absorption and emission spectra: beyond the vertical transition approximation. J Chem Theory Comput 9(4):2072–2082

    Article  CAS  PubMed  Google Scholar 

  71. Serrano-Andrés L, Merchán M, Nebot-Gil I, Lindh R, Roos BO (1993) Towards an accurate molecular-orbital theory for excited-states—ethene, butadiene, and hexatriene. J Chem Phys 98(4):3151–3162

    Article  Google Scholar 

  72. Lorentzon J, Malmqvist P-Å, Fülscher M, Roos BO (1995) A caspt2 study of the valence and lowest rydberg electronic states of benzene and phenol. Theor Chim Acta 91(1):91–108

    Article  CAS  Google Scholar 

  73. Serrano-Andrés L, Roos BO (1996) Theoretical study of the absorption and emission spectra of indole in the gas phase and in a solvent. J Am Chem Soc 118(1):185–195

    Article  Google Scholar 

  74. Barbatti M, Aquino AJA, Lischka H (2010) The UV absorption of nucleobases: semi-classical ab initio spectra simulations. Phys Chem Chem Phys 12(19):4959–4967

    Article  CAS  PubMed  Google Scholar 

  75. Clark LB, Peschel GG, Tinoco I (1965) Vapor spectra and heats of vaporization of some purine and pyrimidine bases1. J Phys Chem 69(10):3615–3618

    Article  CAS  Google Scholar 

  76. Voet D, Gratzer WB, Cox RA, Doty P (1963) Absorption spectra of nucleotides, polynucleotides, and nucleic acids in the far ultraviolet. Biopolymers 1(3):193–208

    Article  CAS  Google Scholar 

  77. Yamada T, Fukutome H (1968) Vacuum ultraviolet absorption spectra of sublimed films of nucleic acid bases. Biopolymers 6(1):43–54

    Article  CAS  PubMed  Google Scholar 

  78. Abouaf R, Pommier J, Dunet H (2003) Electronic and vibrational excitation in gas phase thymine and 5-bromouracil by electron impact. Chem Phys Lett 381(3–4):486–494

    Article  CAS  Google Scholar 

  79. Platt JR (1949) Classification of spectra of cata-condensed hydrocarbons. J Chem Phys 17(5):484–495

    Article  CAS  Google Scholar 

  80. Roos BO, Andersson K, Fülscher MP, Serrano-Andrés L, Pierloot K, Merchán M, Molina V (1996) Applications of level shift corrected perturbation theory in electronic spectroscopy. J Mol Struct 388:257–276

    Article  CAS  Google Scholar 

  81. Roos BO, Andersson K (1995) Multiconfigurational perturbation-theory with level shift - the cr-2 potential revisited. Chem Phys Lett 245(2–3):215–223

    Article  CAS  Google Scholar 

  82. Giussani A, Marcheselli J, Mukamel S, Garavelli M, Nenov A (2017) On the simulation of two-dimensional electronic spectroscopy of indole-containing peptides. Photochem Photobiol 93(6):1368–1380

    Article  CAS  PubMed  Google Scholar 

  83. Hamm P, Zanni M (2011) Concepts and methods of 2D infrared spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  84. Camilloni C, Broglia RA, Tiana G (2011) Hierarchy of folding and unfolding events of protein G, CI2, and ACBP from explicit-solvent simulations. J Chem Phys 134(4):045105

    Article  CAS  PubMed  Google Scholar 

  85. Ezra FS, Lee CH, Kondo NS, Danyluk SS, Sarma RH (1977) Conformational properties of purine-pyrimidine and pyrimidine-purine dinucleoside monophosphates. Biochemistry 16(9):1977–1987

    Article  CAS  PubMed  Google Scholar 

  86. Crespo-Hernandez CE, Cohen B, Hare PM, Kohler B (2004) Ultrafast excited-state dynamics in nucleic acids. Chem Rev 104(4):1977–2019

    Article  CAS  PubMed  Google Scholar 

  87. Takaya T, Su C, Harpe KdL, Crespo-Hernández CE, Kohler B (2008) UV excitation of single DNA and RNA strands produces high yields of exciplex states between two stacked bases. Proc Natl Acad Sci 105:10285–10290

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ruzicka P, Kral T (2013) Pyrene: chemical properties, biochemistry applications and toxic effects. Chemistry research and applications. Nova Science Publishers, New York

    Google Scholar 

  89. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94(8):2319–2358

    Article  CAS  Google Scholar 

  90. Kwon J, Park SK, Lee Y, Lee JS, Kim J (2017) Tailoring chemically converted graphenes using a water-soluble pyrene derivative with a zwitterionic arm for sensitive electrochemiluminescence-based analyses. Biosens Bioelectron 87:89–95

    Article  CAS  PubMed  Google Scholar 

  91. Figueira-Duarte TM, Mullen K (2011) Pyrene-based materials for organic electronics. Chem Rev 111(11):7260–7314

    Article  CAS  PubMed  Google Scholar 

  92. Niko Y, Didier P, Mely Y, Konishi G, Klymchenko AS (2016) Bright and photostable push-pull pyrene dye visualizes lipid order variation between plasma and intracellular membranes. Sci Rep 6:18870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nenov A, Giussani A, Fingerhut BP, Rivalta I, Dumont E, Mukamel S, Garavelli M (2015) Spectral lineshape in nonlinear electronic spectroscopy. Phys Chem Chem Phys 17:30925–30936

    Article  CAS  PubMed  Google Scholar 

  94. Petit AS, Subotnik JE (2014) How to calculate linear absorption spectra with lifetime broadening using fewest switches surface hopping trajectories: a simple generalization of ground-state Kubo theory. J Chem Phys 141(1):014107

    Article  CAS  PubMed  Google Scholar 

  95. Nemeth A, Milota F, Mancal T, Pullerits T, Sperling J, Hauer J, Kauffmann HF, Christensson N (2010) Double-quantum two-dimensional electronic spectroscopy of a three-level system: experiments and simulations. J Chem Phys 133(9):094505

    Article  CAS  PubMed  Google Scholar 

  96. Butkus V, Zigmantas D, Valkunas L, Abramavicius D (2012) Vibrational vs. Electronic coherences in 2D spectrum of molecular systems. Chem Phys Lett 545:40–43

    Article  CAS  Google Scholar 

  97. Butkus V, Valkunas L, Abramavicius D (2012) Molecular vibrations-induced quantum beats in two-dimensional electronic spectroscopy. J Chem Phys 137(4):044513

    Article  CAS  PubMed  Google Scholar 

  98. Raytchev M, Pandurski E, Buchvarov I, Modrakowski C, Fiebig T (2003) Bichromophoric interactions and time-dependent excited state mixing in pyrene derivatives. A femtosecond broad-band pump-probe study. J Phys Chem A 107(23):4592–4600

    Article  CAS  Google Scholar 

  99. Krebs N (2013) New insights for femtosecond spectroscopy: from transient absorption to 2-dimensional spectroscopy in the UV spectral domain. PhD Dissertation, Faculty of Physics, Ludwig-Maximilians-University Munich

  100. Zhang WM, Meier T, Chernyak V, Mukamel S (1998) Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes. J Chem Phys 108(18):7763–7774

    Article  CAS  Google Scholar 

  101. Meier T, Chernyak V, Mukamel S (1997) Femtosecond photon echoes in molecular aggregates. J Chem Phys 107(21):8759–8780

    Article  CAS  Google Scholar 

  102. Neuwahl FVR, Foggi P (1999) Direct observation of s2–s1 internal conversion in pyrene by femtosecond transient absorption. Laser Chem 19(1–4):375–379

    Article  CAS  Google Scholar 

  103. Foggi P, Pettini L, Santa I, Righini R, Califano S (1995) Transient absorption and vibrational relaxation dynamics of the lowest excited singlet state of pyrene in solution. J Phys Chem 99(19):7439–7445

    Article  CAS  Google Scholar 

  104. Chen J, Zhang Y, Kohler B (2015) Excited states in DNA strands investigated by ultrafast laser spectroscopy. In: Barbatti M, Borin AC, Ullrich S (eds) Photoinduced phenomena in nucleic acids ii. Topics in current chemistry. Springer International Publishing, Berlin, vol 356, pp 39–87. https://doi.org/10.1007/128_2014_570

  105. Bucher DB, Kufner CL, Schlueter A, Carell T, Zinth W (2016) UV-induced charge transfer states in DNA promote sequence selective self-repair. J Am Chem Soc 138(1):186–190

    Article  CAS  PubMed  Google Scholar 

  106. Schreier WJ, Gilch P, Zinth W (2015) Early events of DNA photodamage. Annu Rev Phys Chem 66(1):497–519

    Article  CAS  PubMed  Google Scholar 

  107. Vayá I, Gustavsson T, Douki T, Berlin Y, Markovitsi D (2012) Electronic excitation energy transfer between nucleobases of natural DNA. J Am Chem Soc 134(28):11366–11368

    Article  CAS  PubMed  Google Scholar 

  108. Cadet J, Grand A, Douki T (2015) Solar UV radiation-induced DNA bipyrimidine photoproducts: Formation and mechanistic insights. In: Barbatti M, Borin AC, Ullrich S (eds) Photoinduced phenomena in nucleic acids ii. Topics in current chemistry. Springer International Publishing, Berlin, vol 356, pp 249–275. doi:10.1007/128_2014_553

  109. Cadet J, Mouret S, Ravanat J-L, Douki T (2012) Photoinduced damage to cellular DNA: direct and photosensitized reactions†. Photochem Photobiol 88(5):1048–1065

    Article  CAS  PubMed  Google Scholar 

  110. Pecourt JML, Peon J, Kohler B (2001) DNA excited-state dynamics: ultrafast internal conversion and vibrational cooling in a series of nucleosides. J Am Chem Soc 123(42):10370–10378

    Article  CAS  PubMed  Google Scholar 

  111. Peon J, Zewail AH (2001) DNA/RNA nucleotides and nucleosides: Direct measurement of excited-state lifetimes by femtosecond fluorescence up-conversion. Chem Phys Lett 348(3–4):255–262

    Article  CAS  Google Scholar 

  112. Onidas D, Markovitsi D, Marguet S, Sharonov A, Gustavsson T (2002) Fluorescence properties of DNA nucleosides and nucleotides: a refined steady-state and femtosecond investigation. J Phys Chem B 106(43):11367–11374

    Article  CAS  Google Scholar 

  113. Hare PM, Crespo-Hernández CE, Kohler B (2007) Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution. Proc Natl Acad Sci 104:435–440

    Article  CAS  PubMed  Google Scholar 

  114. Pepino AJ, Segarra-Martí J, Nenov A, Improta R, Garavelli M (2017) Resolving ultrafast photoinduced deactivations in water-solvated pyrimidine nucleosides. J Phys Chem Lett 8(8):1777–1783

    Article  CAS  PubMed  Google Scholar 

  115. Segarra-Marti J, Garavelli M, Aquilante F (2015) Multiconfigurational second-order perturbation theory with frozen natural orbitals extended to the treatment of photochemical problems. J Chem Theory Comput 11(8):3772–3784

    Article  CAS  PubMed  Google Scholar 

  116. Vogiatzis KD, Li Manni G, Stoneburner SJ, Ma D, Gagliardi L (2015) Systematic expansion of active spaces beyond the casscf limit: a gasscf/splitgas benchmark study. J Chem Theory Comput 11(7):3010–3021

    Article  CAS  PubMed  Google Scholar 

  117. Li Manni G, Carlson RK, Luo S, Ma D, Olsen J, Truhlar DG, Gagliardi L (2014) Multiconfiguration pair-density functional theory. J Chem Theory Comput 10(9):3669–3680

    Article  CAS  PubMed  Google Scholar 

  118. Casida ME, Huix-Rotllant M (2012) Progress in time-dependent density-functional theory. Annu Rev Phys Chem 63:287–323

    Article  CAS  PubMed  Google Scholar 

  119. Dreuw A, Wormit M (2015) The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. Wiley Interdiscip Rev 5(1):82–95

    CAS  Google Scholar 

  120. Sneskov K, Christiansen O (2012) Excited state coupled cluster methods. Wiley Interdiscip Rev 2(4):566–584

    CAS  Google Scholar 

  121. Chan GK-L, Sharma S (2011) The density matrix renormalization group in quantum chemistry. Annu Rev Phys Chem 62(1):465–481

    Article  CAS  PubMed  Google Scholar 

  122. Thomas RE, Sun Q, Alavi A, Booth GH (2015) Stochastic multiconfigurational self-consistent field theory. J Chem Theory Comput 11(11):5316–5325

    Article  CAS  PubMed  Google Scholar 

  123. Segarra-Martí J, Zvereva E, Marazzi M, Brazard J, Dumont E, Assfeld X, Haacke S, Garavelli M, Monari A, Léonard J, Rivalta I (2018) Resolving the singlet excited state manifold of benzophenone by first-principles simulations and ultrafast spectroscopy. J Chem Theory Comput 14(5):2570–2585

    Article  CAS  PubMed  Google Scholar 

  124. Li BL, Johnson AE, Mukamel S, Myers AB (1994) The Brownian oscillator model for solvation effects in spontaneous light-emission and their relationship to electron-transfer. J Am Chem Soc 116(24):11039–11047

    Article  CAS  Google Scholar 

Download references

Acknowledegements

Ivan Rivalta acknowledges support from the French Agence National de la Recherche (FEMTO-2DNA, ANR-15-CE29-0010). Javier Segarra-Marti thanks Dr. Lara Martínez-Fernández for useful discussions. Marco Garavelli acknowledges support from the European Research Council STRATUS Advanced Grant (ERC-2011-AdG No. 291198). Shaul Mukamel gratefully acknowledges the support of the National Science Foundation (Grant CHE-1361516) and the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Rivalta.

Additional information

This article is part of the Topical Collection "Multidimensional Time-Resolved Spectroscopy"; edited by Tiago Buckup, Jeremie Leonard.

Appendices

Appendix: Retarded Green’s function and third-order density matrix

In the absence of an external field (\(\hat{H} = \hat{H}_{0}\)), the free evolution of an unperturbed density matrix, \(\hat{\rho }^{(0)} (t)\), is stated as

$$\hat{\rho }^{(0)} (t) = G(t)\hat{\rho }(0) = \varTheta (t)e^{{ - \left( {\frac{i}{\hbar }} \right)\hat{H}_{0} t}} \hat{\rho }(0)^{{\left( {\frac{i}{\hbar }} \right)\hat{H}_{0} t}}$$
(A.1)

where \(\hat{\rho }(0) = \left| g \right\rangle \left\langle g \right|\) is the density matrix of the system in the GS equilibrium (g), and \(\varTheta (t) = \int_{ - \infty }^{t} {d\tau \delta (\tau )}\) is the Heaviside step-function ensuring causality.

In the perturbation scheme described in Sect. 2.1 (Eq. 5), the third-order density matrix is stated as

$$\hat{\rho }^{(3)} (t) = G(t)\hat{\rho }(0) + \left( {\frac{i}{\hbar }} \right)^{3} \int\limits_{0}^{t} {d\tau_{3} } \int\limits_{0}^{{\tau_{3} }} {d\tau_{2} \cdots } \int\limits_{0}^{{\tau_{2} }} {d\tau_{1} } \,G(t - \tau_{3} )[{\text{H}}'(\tau_{3} )G(\tau_{3} - \tau_{2} )[{\text{H}}'(\tau_{2} )G(\tau_{2} - \tau_{1} )[{\text{H}}'(\tau_{1} )G(\tau_{1} )\rho (0)]]]$$
(A.2)

Lindblad equation and population transfer

In the CGF approach, population transfer is assumed to arise from fast (and thus memoryless) bath fluctuations, i.e. characterized by rapidly decaying correlation functions. Population transfers can be included phenomenologically by adding fluctuation and dissipation terms to the Liouville–von Neumann equation (Eq. 4), leading to the Lindblad equation

$$\dot{\hat{\rho }} = \frac{i}{\hbar }[\hat{H},\hat{\rho }] + \sum\limits_{\alpha } {\left( {\hat{V}_{\alpha } \hat{\rho }\hat{V}_{\alpha } \mathop - \limits^{\dag } \frac{1}{1}\hat{V}_{\alpha } \mathop V\limits^{{\dag {\mathbf{ \wedge }}\,}}_{\alpha } \hat{\rho } - \frac{1}{2}\hat{\rho }\hat{V}_{\alpha } \mathop V\limits^{{\dag {\mathbf{ \wedge }}\,}}_{\alpha } } \right)}$$
(A.3)

where \(\hat{V}_{\alpha }\) are operators describing system–bath couplings in the most general form. Applying the secular approximation to the Green’s function, i.e. discarding the fast oscillating coherence terms that decay before population transfer is activated, results in the Pauli master equation describing the population relaxation

$$\frac{{{\text{d}}\rho_{\text{ee}} ( {\text{t)}}}}{{{\text{d}}t}} = - \sum\limits_{e'} {K_{ee,e'e'} \rho_{e'e'} (t)}$$
(A.4)

where K is the rate matrix, with elements \(K_{ee,e'e'}\) depicting the rate of population transfer from state e into state e’. The solution of the differential equation is formally given by the population Green’s function

$$\rho_{e'e'} (t) = - \sum\limits_{e} {G_{e'e',ee} (t)\rho_{ee} (0)}$$
(A.5)

, and the elements of the matrix \(G_{e'e',ee} (t)\) act as time-dependent weighting factors in Liouville pathways, where populations evolve in the excited state, like those of ESAs and SEs (in Eq. 9).

Phase functions and line shape

The phase functions can assume different forms depending on the level of sophistication applied to describe the vibrational dynamics of the system (an overview is given in Refs. [2, 47]). The main building block is the line shape function g ij (t), which is the integral transformation of the autocorrelation function of bath fluctuations

$$g_{ij} (t) = \frac{1}{2\pi }\int {\frac{{C_{ij} (\omega )}}{{\omega^{2} }}} \left[\coth \left( {\frac{\hbar \omega }{{2k_{B} T}}} \right)(1 - \cos \,\,\omega t) + i\sin \,\,\omega t - i\omega t\right]d\omega$$
(A.6)

It can be obtained from MD simulations or in closed-form expressions derived from different models. For example, the homogeneous (anti-diagonal) broadening of the spectral signals arising due to coupling to a continuum of fast-decaying low-frequency modes can be expressed by the line shape function of the semi-classical Brownian oscillator (OBO) [124]:

$$g_{ij}^{OBO} (t) = \frac{{\lambda_{ij} }}{\varLambda }\left( {\frac{{2k_{B} T}}{\hbar \varLambda } - i} \right)(e^{ - \varLambda t} + \varLambda t - 1)$$
(A.7)

where λ ij and Λ are the system–bath coupling strength and fluctuation timescale, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segarra-Martí, J., Mukamel, S., Garavelli, M. et al. Towards Accurate Simulation of Two-Dimensional Electronic Spectroscopy. Top Curr Chem (Z) 376, 24 (2018). https://doi.org/10.1007/s41061-018-0201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-018-0201-8

Keywords

Navigation