Skip to main content
Log in

Spectroscopic fingerprints of DNA/RNA pyrimidine nucleobases in third-order nonlinear electronic spectra

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Accurate ab initio modeling of spectroscopic signals in nonlinear electronic spectra, such as bidimensional (2D) spectra, requires the computation of the electronic transitions induced by the incoming pump/probe pulses, resulting in a challenging calculation of many electronic excited states. A protocol is thus required to evaluate the variations of spectral properties, like transition energies and dipole moments, with the computational level, and to estimate the sensitivity of the spectra to these variations. Such a protocol is presented here within the framework of complete and restricted active space self-consistent field (CASSCF/RASSCF) theory and its second-order perturbation theory extensions (CASPT2/RASPT2). The electronic excited-state manifolds of pyrimidine nucleobases (thymine, uracil, and cytosine) are carefully characterized in vacuo employing high-level RAS(0,0|10,8|2,12)//SS-RASPT2 calculations. The results provide a reference data set that can be used for optimizing computational efforts and costs, as required for studying computationally more demanding multichromophoric systems (e.g., di- and oligonucleotides). The spectroscopic signatures of the 2D electronic spectrum of a perfectly stacked uracil–cytosine dimer model are characterized, and experimental setups are proposed that can resolve non-covalent interchromophoric interactions in canonical pyrimidine nucleobase-stacked dimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gustavsson T, Improta R, Markovitsi D (2010) DNA/RNA: building blocks of life under UV irradiation. J Phys Chem Lett 1(13):2025–2030. doi:10.1021/jz1004973

    Article  CAS  Google Scholar 

  2. Vaya I, Gustavsson T (2010) Fluorescence of natural DNA: from the femtosecond to the nanosecond time scales. 10:11834–11835

  3. Giussani A, Segarra-Martí J, Roca-Sanjuán D, Merchán M (2015) Excitation of nucleobases from a computational perspective I: reaction paths. In: Barbatti M, Borin AC, Ullrich S (eds) Photoinduced phenomena in nucleic acids I, vol 355. Topics in current chemistry. Springer International Publishing, pp 57–97. doi:10.1007/128_2013_501

  4. Crespo-Hernandez CE, Cohen B, Hare PM, Kohler B (2004) Ultrafast excited-state dynamics in nucleic acids. Chem Rev 104(4):1977–2019. doi:10.1021/cr0206770

    Article  CAS  Google Scholar 

  5. Chen J, Zhang Y, Kohler B (2015) Excited states in DNA strands investigated by ultrafast laser spectroscopy. In: Barbatti M, Borin AC, Ullrich S (eds) Photoinduced phenomena in nucleic acids II, vol 356. Topics in current chemistry. Springer International Publishing, pp 39–87. doi:10.1007/128_2014_570

  6. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernandez CE, Kohler B (2009) DNA excited-state dynamics: from single bases to the double helix. In: Annual review of physical chemistry, vol 60. Annual review of physical chemistry. Annual reviews, Palo Alto, pp 217–239. doi:10.1146/annurev.physchem.59.032607.093719

  7. Merchán M, González-Luque R, Climent T, Serrano-Andrés L, Rodriguez E, Reguero M, Pelaez D (2006) Unified model for the ultrafast decay of pyrimidine nucleobases. J Phys Chem B 110(51):26471–26476. doi:10.1021/jp066874a

    Article  Google Scholar 

  8. Noonan FP, Zaidi MR, Wolnicka-Glubisz A, Anver MR, Bahn J, Wielgus A, Cadet J, Douki T, Mouret S, Tucker MA, Popratiloff A, Merlino G, De Fabo EC (2012) Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nat Commun 3:884

    Article  Google Scholar 

  9. Cadet J, Mouret S, Ravanat J-L, Douki T (2012) Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem Photobiol 88(5):1048–1065. doi:10.1111/j.1751-1097.2012.01200.x

    Article  CAS  Google Scholar 

  10. Cadet J, Grand A, Douki T (2015) Solar UV radiation-induced DNA bipyrimidine photoproducts: formation and mechanistic insights. In: Barbatti M, Borin AC, Ullrich S (eds) Photoinduced phenomena in nucleic acids II, vol 356. Topics in current chemistry. Springer International Publishing, pp 249–275. doi:10.1007/128_2014_553

  11. Giussani A, Serrano-Andrés L, Merchán M, Roca-Sanjuán D, Garavelli M (2013) Photoinduced formation mechanism of the thymine-thymine (6-4) adduct. J Phys Chem B 117(7):1999–2004. doi:10.1021/jp307200g

    Article  CAS  Google Scholar 

  12. Barbatti M, Borin A, Ullrich S (2014) Photoinduced processes in nucleic acids. In: Topics in current chemistry. Springer, Berlin, pp 1–32. doi:10.1007/128_2014_569

  13. Crespo-Hernández CE, Cohen B, Kohler B (2005) Base stacking controls excited-state dynamics in A.T DNA. Nature 436 (7054):1141–1144. doi:10.1038/nature03933

  14. Chen J, Kohler B (2014) Base stacking in adenosine dimers revealed by femtosecond transient absorption spectroscopy. J Am Chem Soc 136(17):6362–6372. doi:10.1021/ja501342b

    Article  CAS  Google Scholar 

  15. Su C, Middleton CT, Kohler B (2012) Base-stacking disorder and excited-state dynamics in single- stranded adenine homo-oligonucleotides

  16. Onidas D, Gustavsson T, Lazzarotto E, Markovitsi D (2007) Fluorescence of the DNA double helices (dAdT)n. (dAdT)n studied by femtosecond spectroscopy. Phys Chem Chem Phys 9(37):5143–5148. doi:10.1039/b707882j

    Article  CAS  Google Scholar 

  17. Markovitsi D, Gustavsson T, Vayá I (2010) Fluorescence of DNA duplexes: from model helices to natural DNA. J Phys Chem Lett 1(22):3271–3276. doi:10.1021/jz101122t

    Article  CAS  Google Scholar 

  18. Abramavicius D, Palmieri B, Voronine DV, Sanda F, Mukamel S (2009) Chem Rev 109:2350

    Article  CAS  Google Scholar 

  19. Mukamel S (1995) Principles of nonlinear optical spectroscopy. O.U.P, New York

    Google Scholar 

  20. Polli D, Rivalta I, Nenov A, Weingart O, Garavelli M, Cerullo G (2015) Tracking the primary photoconversion events in rhodopsins by ultrafast optical spectroscopy. Photochem Photobiol Sci. doi:10.1039/C4PP00370E

    Google Scholar 

  21. C-h Tseng, Sándor P, Kotur M, Weinacht T, Matsika S (2012) Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV. J Phys Chem A 116:2654–2661

    Article  Google Scholar 

  22. West BA, Moran AM (2012) Two-dimensional electronic spectroscopy in the ultraviolet wavelength range. J Phys Chem Lett 3(18):2575–2581. doi:10.1021/jz301048n

    Article  CAS  Google Scholar 

  23. Rivalta I, Nenov A, Cerullo G, Mukamel S, Garavelli M (2014) Ab initio simulations of two-dimensional electronic spectra: the SOS//QM/MM approach. Int J Quantum Chem 114(2):85–93. doi:10.1002/qua.24511

    Article  CAS  Google Scholar 

  24. Nenov A, Rivalta I, Mukamel S, Garavelli M (2014) Bidimensional electronic spectroscopy on indole in gas phase and in water from first principles. Comput Theor Chem 1040–1041:295–303. doi:10.1016/j.comptc.2014.03.031

    Article  Google Scholar 

  25. Nenov A, Rivalta I, Cerullo G, Mukamel S, Garavelli M (2014) Disentangling peptide configurations via two-dimensional electronic spectroscopy: ab initio simulations beyond the Frenkel exciton hamiltonian. J Phys Chem Lett 5:767–771

    Article  CAS  Google Scholar 

  26. Nenov A, Segarra-Martí J, Giussani A, Conti I, Rivalta I, Dumont E, Jaiswal VK, Altavilla SF, Mukamel S, Garavelli M (2015) FD 177: probing deactivation pathways of DNA nucleobases by two-dimensional electronic spectroscopy: first principles simulations. Faraday Discuss 177:345–362. doi:10.1039/C4FD00175C

    Article  CAS  Google Scholar 

  27. Rivalta I, Nenov A, Weingart O, Cerullo G, Garavelli M, Mukamel S (2014) Modelling time-resolved two-dimensional electronic spectroscopy of the primary photoisomerization event in rhodopsin. J Phys Chem B 118(28):8396–8405. doi:10.1021/jp502538m

    Article  CAS  Google Scholar 

  28. Roos BO (1987) The complete active space self-consistent field method and its applications in electronic structure calculations. In: Advances in chemical physics. John Wiley & Sons, Inc., New York, pp 399–445. doi:10.1002/9780470142943.ch7

  29. Andersson K, Malmqvist PA, Roos BO (1992) 2nd-order perturbation-theory with a complete active space self-consistent field reference function. J Chem Phys 96(2):1218–1226. doi:10.1063/1.462209

    Article  CAS  Google Scholar 

  30. Roca-Sanjuán D, Aquilante F, Lindh R (2012) Multiconfiguration second-order perturbation theory approach to strong electron correlation in chemistry and photochemistry. Wiley Interdiscip Rev Comput Mol Sci 2(4):585–603. doi:10.1002/wcms.97

    Article  Google Scholar 

  31. Roos BO, Andersson K, Fulscher MP, Malmqvist PA, Serrano-Andrés L, Pierloot K, Merchán M (1996) Multiconfigurational perturbation theory: applications in electronic spectroscopy. Adv Chem Phys Vol Xciii 93:219–331. doi:10.1002/9780470141526.ch5

    Google Scholar 

  32. Saurí V, Serrano-Andrés L, Shahi ARM, Gagliardi L, Vancoillie S, Pierloot K (2011) Multiconfigurational second-order perturbation theory restricted active space (RASPT2) method for electronic excited states: a benchmark study. J Chem Theory Comput 7(1):153–168. doi:10.1021/ct100478d

    Article  Google Scholar 

  33. Rubio M, Serrano-Andrés L, Merchán M (2008) Excited states of the water molecule: analysis of the valence and Rydberg character. J Chem Phys 128 (10). doi:10.1063/1.2837827

  34. Segarra-Martí J, Garavelli M, Aquilante F (2015) Multiconfigurational second-order perturbation theory with frozen natural orbitals extended to the treatment of photochemical problems. J Chem Theory Comput 11(8):3772–3784. doi:10.1021/acs.jctc.5b00479

    Article  Google Scholar 

  35. Garavelli M (2006) Computational organic photochemistry: strategy. Achiev Perspect Theor Chem Acc 116(1–3):87–105. doi:10.1007/s00214-005-0030-z

    Article  CAS  Google Scholar 

  36. Giussani A (2014) Toward the understanding of the photophysics and photochemistry of 1-nitronaphthalene under solar radiation: the first theoretical evidence of a photodegradation intramolecular rearrangement mechanism involving the triplet states. J Chem Theory Comput 10(9):3987–3995. doi:10.1021/ct500395f

    Article  CAS  Google Scholar 

  37. Schapiro I, Ryazantsev MN, Manuel Frutos L, Ferre N, Lindh R, Olivucci M (2011) The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects. J Am Chem Soc 133(10):3354–3364. doi:10.1021/ja1056196

    Article  CAS  Google Scholar 

  38. Segarra-Martí J, Coto PB (2014) A theoretical study of the intramolecular charge transfer in 4-(dimethylamino)benzethyne. Phys Chem Chem Phys 16(46):25642–25648. doi:10.1039/C4CP03436H

    Article  Google Scholar 

  39. Malmqvist PÅ, Pierloot K, Shahi ARM, Cramer CJ, Gagliardi L (2008) The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. J Chem Phys 128(20):204109. doi:10.1063/1.2920188

    Article  Google Scholar 

  40. Nenov A, Mukamel S, Garavelli M, Rivalta I (2015) Two-dimensional electronic spectroscopy of benzene, phenol, and their dimer: an efficient first-principles simulation protocol. J Chem Theory Comput 11(8):3755–3771. doi:10.1021/acs.jctc.5b00443

    Article  CAS  Google Scholar 

  41. Szalay PG, Watson T, Perera A, Lotrich VF, Bartlett RJ (2012) Benchmark studies on the building blocks of DNA. 1. Superiority of coupled cluster methods in describing the excited states of nucleobases in the Franck–Condon region. J Phys Chem A 116(25):6702–6710. doi:10.1021/jp300977a

    Article  CAS  Google Scholar 

  42. Szalay PG, Watson T, Perera A, Lotrich V, Fogarasi G, Bartlett RJ (2012) Benchmark studies on the building blocks of DNA. 2. Effect of biological environment on the electronic excitation spectrum of nucleobases. J Phys Chem A 116(35):8851–8860. doi:10.1021/jp305130q

    Article  CAS  Google Scholar 

  43. Szalay PG, Watson T, Perera A, Lotrich V, Bartlett RJ (2013) Benchmark Studies on the Building Blocks of DNA. 3. Watson–Crick and stacked base pairs. J Phys Chem A 117(15):3149–3157. doi:10.1021/jp3100975

    Article  CAS  Google Scholar 

  44. Roca-Sanjuán D, Rubio M, Merchán M, Serrano-Andrés L (2006) Ab initio determination of the ionization potentials of DNA and RNA nucleobases. J Chem Phys 125(8):084302. doi:10.1063/1.2336217

    Article  Google Scholar 

  45. Shida S, Hatano Y (1976) Fragmentation of excited molecules and ions in the radiolysis of hydrocarbons. Int J Radiat Phys Chem 8(1–2):171–185. doi:10.1016/0020-7055(76)90064-4

    Article  CAS  Google Scholar 

  46. Nenov A, Giussani A, Segarra-martí J, Vishal K, Rivalta I, Cerullo G, Mukamel S (2015) Modeling the high-energy electronic state manifold of adenine: calibration for nonlinear electronic spectroscopy. J Chem Phys 142:212443

    Article  Google Scholar 

  47. Lorentzon J, Malmqvist P-Å, Fülscher M, Roos B (1995) A CASPT2 study of the valence and lowest Rydberg electronic states of benzene and phenol. Theor Chim Acta 91(1–2):91–108. doi:10.1007/BF01113865

    Article  CAS  Google Scholar 

  48. Robin MB (1974) Higher excited states of polyatomic molecules, vol 1. Academic Press Inc, London

    Google Scholar 

  49. Widmark PO, Persson BJ, Roos BO (1991) Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. II. Second row atoms. Theor Chim Acta 79(6):419–432

    Article  CAS  Google Scholar 

  50. Altavilla SF, Segarra-Martí J, Nenov A, Conti I, Rivalta I, Garavelli M (2015) Deciphering the photochemical mechanisms describing the UV-induced processes occurring in solvated guanine monophosphate. Front Chem 3. doi:10.3389/fchem.2015.00029

  51. Nakayama A, Arai G, Yamazaki S, Taketsugu T (2013) Solvent effects on the ultrafast nonradiative deactivation mechanisms of thymine in aqueous solution: excited-state QM/MM molecular dynamics simulations. J Chem Phys 139(21):214304. doi:10.1063/1.4833563

    Article  Google Scholar 

  52. Buchner F, Nakayama A, Yamazaki S, Ritze H-H, Lübcke A (2015) Excited-state relaxation of hydrated thymine and thymidine measured by liquid-jet photoelectron spectroscopy: experiment and simulation. J Am Chem Soc 137(8):2931–2938. doi:10.1021/ja511108u

    Article  CAS  Google Scholar 

  53. Malmqvist P-Å, Roos BO (1989) The CASSCF state interaction method. Chem Phys Lett 155(2):189–194. doi:10.1016/0009-2614(89)85347-3

    Article  CAS  Google Scholar 

  54. Szalay PG, Müller T, Gidofalvi G, Lischka H, Shepard R (2012) Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. Chem Rev 112(1):108–181. doi:10.1021/cr200137a

    Article  CAS  Google Scholar 

  55. Malmqvist PA, Rendell A, Roos BO (1990) The restricted active space self-consistent-field method, implemented with a split graph unitary-group approach. J Phys Chem 94(14):5477–5482. doi:10.1021/j100377a011

    Article  CAS  Google Scholar 

  56. Ghigo G, Roos BO, Malmqvist P-Å (2004) A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem Phys Lett 396(1–3):142–149. doi:10.1016/j.cplett.2004.08.032

    Article  CAS  Google Scholar 

  57. Forsberg N, Malmqvist PA (1997) Multiconfiguration perturbation theory with imaginary level shift. Chem Phys Lett 274(1–3):196–204. doi:10.1016/s0009-2614(97)00669-6

    Article  CAS  Google Scholar 

  58. Bostrom J, Delcey MG, Aquilante F, Serrano-Andres L, Pedersen TB, Lindh R (2010) Calibration of Cholesky auxiliary basis sets for multiconfigurational perturbation theory calculations of excitation energies. J Chem Theory Comput 6(3):747–754. doi:10.1021/ct900612k

    Article  Google Scholar 

  59. Aquilante F, Malmqvist P-Å, Pedersen TB, Ghosh A, Roos BO (2008) Cholesky decomposition-based multiconfiguration second-order perturbation theory (CD-CASPT2): application to the spin-state energetics of CoIII(diiminato)(NPh). J Chem Theory Comput 4(5):694–702. doi:10.1021/ct700263h

    Article  CAS  Google Scholar 

  60. Pedersen T, Aquilante F, Lindh R (2009) Density fitting with auxiliary basis sets from Cholesky decompositions. Theoret Chem Acc 124(1–2):1–10. doi:10.1007/s00214-009-0608-y

    Article  CAS  Google Scholar 

  61. Aquilante F, Pedersen TB, Lindh R (2007) Low-cost evaluation of the exchange Fock matrix from Cholesky and density fitting representations of the electron repulsion integrals. J Chem Phys 126(19):194106. doi:10.1063/1.2736701

    Article  Google Scholar 

  62. Aquilante F, Lindh R, Bondo Pedersen T (2007) Unbiased auxiliary basis sets for accurate two-electron integral approximations. J Chem Phys 127(11):114107. doi:10.1063/1.2777146

    Article  Google Scholar 

  63. Aquilante F, De Vico L, Ferré N, Ghigo G, Malmqvist PA, Neogrady P, Pedersen TB, Pitonak M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Veryazov V, Lindh R (2010) Software news and update MOLCAS 7: the next generation. J Comput Chem 31(1):224–247. doi:10.1002/jcc.21318

    Article  CAS  Google Scholar 

  64. Aquilante F, Pedersen TB, Veryazov V, Lindh R (2013) MOLCAS—a software for multiconfigurational quantum chemistry calculations. Wiley Interdiscip Rev Comput Mol Sci 3(2):143–149. doi:10.1002/wcms.1117

    Article  CAS  Google Scholar 

  65. Aquilante F, Autschbach J, Carlson R, Chibotaru L, Delcey MG, De Vico L, Fernández Galvan I, Ferré N, Frutos LM, Gagliardi L, Garavelli M, Giussani A, Hoyer C, Li Manni G, Lischka H, Ma D, Malmqvist PA, Müller T, Nenov A, Olivucci M, Pedersen TB, Peng D, Plasser F, Pritchard B, Reiher M, Rivalta I, Schapiro I, Segarra-Martí J, Stenrup M, Truhlar DG, Ungur L, Valentini A, Vancoillie S, Veryazov V, Vysotskiy V, Weingart O, Zapata F, Lindh R (2015) Molcas 8: new capabilities for multiconfigurational quantum chemical calculations across the periodic table. J Comput Chem. doi:10.1002/jcc.24221.10.1002/jcc.24221

    Google Scholar 

  66. Nenov A, Giussani A, Fingerhut BP, Rivalta I, Dumont E, Mukamel S, Garavelli M (2015) Spectral lineshape in nonlinear electronic spectroscopy †. Phys Chem Chem Phys 17:30925–30936. doi:10.1039/C5CP01167A

    Article  CAS  Google Scholar 

  67. Tempelaar R, van der Vegte CP, Knoester J, Jansen TLC (2013) Surface hopping modeling of two-dimensional spectra. J Chem Phys 138(16):164106. doi:10.1063/1.4801519

    Article  Google Scholar 

  68. May V, Kühn O (2011) Charge and energy transfer dynamics in molecular systems. Wiley VCH, Germany

    Book  Google Scholar 

  69. Fülscher MP, Serrano-Andrés L, Roos BO (1997) A theoretical study of the electronic spectra of adenine and guanine. J Am Chem Soc 119(26):6168–6176. doi:10.1021/ja964426i

    Article  Google Scholar 

  70. Lorentzon J, Fuelscher MP, Roos BO (1995) Theoretical study of the electronic spectra of uracil and thymine. J Am Chem Soc 117(36):9265–9273. doi:10.1021/ja00141a019

    Article  CAS  Google Scholar 

  71. Fülscher MP, Roos BO (1995) Theoretical study of the electronic spectrum of cytosine. J Am Chem Soc 117(7):2089–2095. doi:10.1021/ja00112a024

    Article  Google Scholar 

  72. Schreiber M, Silva MR, Sauer SPA, Thiel W (2008) Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J Chem Phys 128 (13). doi:10.1063/1.2889385

  73. Silva MR, Schreiber M, Sauer SPA, Thiel W (2008) Benchmarks for electronically excited states: time-dependent density functional theory and density functional theory based multireference configuration interaction. J Chem Phys 129 (10). doi:10.1063/1.2973541

  74. Abouaf R, Pommier J, Dunet H (2003) Electronic and vibrational excitation in gas phase thymine and 5-bromouracil by electron impact. Chem Phys Lett 381(3–4):486–494. doi:10.1016/j.cplett.2003.09.121

    Article  CAS  Google Scholar 

  75. Gustavsson T, Banyasz A, Lazzarotto E, Markovitsi D, Scalmani G, Frisch MJ, Barone V, Improta R (2006) Singlet excited-state behavior of uracil and thymine in aqueous solution: a combined experimental and computational study of 11 uracil derivatives. J Am Chem Soc 128(2):607–619. doi:10.1021/ja056181s

    Article  CAS  Google Scholar 

  76. Kannar D, Szalay PG (2014) Benchmarking coupled cluster methods on singlet excited states of nucleobases. J Mol Model 20:2503

    Article  Google Scholar 

  77. Clark LB, Peschel GG, Tinoco I (1965) Vapor spectra and heats of vaporization of some purine and pyrimidine bases1. J Phys Chem 69(10):3615–3618. doi:10.1021/j100894a063

    Article  CAS  Google Scholar 

  78. Voet D, Gratzer WB, Cox RA, Doty P (1963) Absorption spectra of nucleotides, polynucleotides, and nucleic acids in the far ultraviolet. Biopolymers 1(3):193–208. doi:10.1002/bip.360010302

    Article  CAS  Google Scholar 

  79. Yamada T, Fukutome H (1968) Vacuum ultraviolet absorption spectra of sublimed films of nucleic acid bases. Biopolymers 6(1):43–54. doi:10.1002/bip.1968.360060104

    Article  CAS  Google Scholar 

  80. Zaloudek F, Novros JS, Clark LB (1985) The electronic spectrum of cytosine. J Am Chem Soc 107:7344–7351

    Article  CAS  Google Scholar 

  81. Kozak CR, Kistler KA, Lu Z, Matsika S (2010) Excited-state energies and electronic couplings of DNA base dimers. J Phys Chem B 114(4):1674–1683. doi:10.1021/jp9072697

    Article  CAS  Google Scholar 

  82. Olaso-González G, Merchán M, Serrano-Andrés L (2009) The role of adenine excimers in the photophysics of oligonucleotides. J Am Chem Soc 131(12):4368–4377. doi:10.1021/ja808280j

    Article  Google Scholar 

  83. Nenov A, Beccara S, Rivalta I, Cerullo G, Mukamel S, Garavelli M (2014) Tracking conformational dynamics of polypeptides by nonlinear electronic spectroscopy of aromatic residues: a first-principles simulation study. Chem Phys Chem 15(15):3282–3290. doi:10.1002/cphc.201402374

    CAS  Google Scholar 

Download references

Acknowledgments

M.G. acknowledges support by the European Research Council Advanced Grant STRATUS (ERC-2011-AdG No. 291198). I. R. gratefully acknowledges the support of the École Normale Supérieure de Lyon (Fonds Recherche 900/S81/BS81-FR14). M.G. and I.R. acknowledge support of the Agence National de la Recherche (FEMTO-2DNA, ANR-15-CE29-0010). S. M. gratefully acknowledges the support of the National Science Foundation (grant CHE-1361516) and of the Chemical Sciences, Geosciences, and Biosciences division, Office of Basic Energy Sciences, Office of Science, US Department of Energy. A.G. and J.S.-M. acknowledge support of Project No. CTQ2014-58624-P of the Spanish MINECO (Ministerio de Economía y Competitividad) and Project. No. GV2015-057 of the Generalitat Valenciana.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angelo Giussani, Javier Segarra-Martí or Marco Garavelli.

Additional information

Published as part of the special collection of articles “Health and Energy from the Sun”.

Angelo Giussani and Javier Segarra-Martí have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6600 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giussani, A., Segarra-Martí, J., Nenov, A. et al. Spectroscopic fingerprints of DNA/RNA pyrimidine nucleobases in third-order nonlinear electronic spectra. Theor Chem Acc 135, 121 (2016). https://doi.org/10.1007/s00214-016-1867-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1867-z

Keywords

Navigation