Skip to main content
Log in

Switching Effects in Molecular Electronic Devices

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

The creation of molecular electronic switches by using smart molecules is of great importance to the field of molecular electronics. This requires a fundamental understanding of the intrinsic electron transport mechanisms, which depend on several factors including the charge transport pathway, the molecule–electrode coupling strength, the energy of the molecular frontier orbitals, and the electron spin state. On the basis of significant progresses achieved in both experiments and theory over the past decade, in this review article we focus on new insights into the design and fabrication of different molecular switches and the corresponding switching effects, which is crucial to the development of molecular electronics. We summarize the strategies developed for single-molecule device fabrication and the mechanism of these switching effects. These analyses should be valuable for deeply understanding the switching effects in molecular electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [24]. Copyright 2005 Nature Publishing Group

Fig. 2

Reproduced with permission from Ref. [25]. Copyright 2013 Wiley-VCH

Fig. 3

Reproduced with permission from Ref. [41]. Copyright 2006 AAAS

Fig. 4

Reproduced with permission from Ref. [40]. Copyright 2011 American Chemical Society. Reproduced with permission from Ref. [34]. Copyright 2012 Wiley-VCH

Fig. 5

Reproduced with permission from Ref. [34]. Copyright 2012 Wiley-VCH. Reproduced with permission from Ref. [44]. Copyright 2013 Wiley-VCH

Fig. 6

Reproduced with permission from Ref. [45]. Copyright 2007 American Chemical Society

Fig. 7

Reproduced with permission from Ref. [11]. Copyright 2012 Wiley-VCH

Fig. 8

Reproduced with permission from Ref. [49]. Copyright 2016 AAAS

Fig. 9

Reproduced with permission from Ref. [51]. Copyright 2015 Nature Publishing Group

Fig. 10

Reproduced with permission from Ref. [53]. Copyright 2014 American Chemical Society

Fig. 11

Reproduced with permission from Ref. [54]. Copyright 2016 The Royal Society of Chemistry. Reproduced with permission from Ref. [22]. Copyright 2015 Wiley-VCH

Fig. 12

Reproduced with permission from Ref. [55]. Copyright 2011 Nature Publishing Group. Reproduced with permission from Ref. [56]. Copyright 2012 AAAS

Fig. 13

Reproduced with permission from Ref. [59]. Copyright 2015 American Chemical Society

Fig. 14

Reproduced with permission from Ref. [52, 70]. Copyright 2014 American Chemical Society

Fig. 15

Reproduced with permission from Ref. [59]. Copyright 2012 American Chemical Society

Fig. 16

Reproduced with permission from Ref. [59]. Copyright 2012 American Chemical Society

Fig. 17

Reproduced with permission from Ref. [76]. Copyright 2016 American Chemical Society

Fig. 18

Reproduced with permission from Ref. [77]. Copyright 2016 American Chemical Society

Fig. 19

Reproduced with permission from Ref. [49]. Copyright 2016 AAAS

Fig. 20

Reproduced with permission from Ref. [84]. Copyright 2014 Nature Publishing Group

Fig. 21

Reproduced with permission from Ref. [90]. Copyright 2013 Royal Society of Chemistry

Fig. 22

Reproduced with permission from Ref. [91]. Copyright 2014 Wiley-VCH

Fig. 23

Reproduced with permission from Ref. [97]. Copyright 2013 Nature Publishing Group

Similar content being viewed by others

References

  1. Xiang D, Wang X, Jia C, Lee T, Guo X (2016) Chem Rev 116:4318

    Article  CAS  Google Scholar 

  2. van der Molen SJ, Liljeroth P (2010) J Phys Condens Matter 22:133001

    Article  Google Scholar 

  3. Zhang X, Hou L, Samori P (2016) Nat Commun 7:11118

    Article  CAS  Google Scholar 

  4. Taherinia D, Frisbie CD (2016) J Phys Chem C 120:6442

    Article  CAS  Google Scholar 

  5. Sendler T, Luka-Guth K, Wieser M, Lokamani, Wolf J, Helm M, Gemming S, Kerbusch J, Scheer E, Huhn T, Erbe A (2015) Adv Sci 2:1500017

    Article  Google Scholar 

  6. Hu W, Zhang G-P, Duan S, Fu Q, Luo Y (2015) J Phys Chem C 119:11468

    Article  CAS  Google Scholar 

  7. Tsuji Y, Hoffmann R (2014) Angew Chem Int Ed 53:4093

    Article  CAS  Google Scholar 

  8. Zheng YB, Pathem BK, Hohman JN, Thomas JC, Kim M, Weiss PS (2013) Adv Mater 25:302

    Article  CAS  Google Scholar 

  9. Roldan D, Kaliginedi V, Cobo S, Kolivoska V, Bucher C, Hong W, Royal G, Wandlowski T (2013) J Am Chem Soc 135:5974

    Article  CAS  Google Scholar 

  10. Kim Y, Hellmuth TJ, Sysoiev D, Pauly F, Pietsch T, Wolf J, Erbe A, Huhn T, Groth U, Steiner UE, Scheer E (2012) Nano Lett 12:3736

    Article  CAS  Google Scholar 

  11. Broman SL, Lara-Avila S, Thisted CL, Bond AD, Kubatkin S, Danilov A, Nielsen MB (2012) Adv Funct Mater 22:4249

    Article  CAS  Google Scholar 

  12. Martin S, Haiss W, Higgins SJ, Nichols RJ (2010) Nano Lett 10:2019

    Article  CAS  Google Scholar 

  13. Choi BY, Kahng SJ, Kim S, Kim H, Kim HW, Song YJ, Ihm J, Kuk Y (2006) Phys Rev Lett 96:156106

    Article  Google Scholar 

  14. Dulic D, van der Molen SJ, Kudernac T, Jonkman HT, de Jong JJ, Bowden TN, van Esch J, Feringa BL, van Wees BJ (2003) Phys Rev Lett 91:207402

    Article  Google Scholar 

  15. Lin W, Zhao Q, Sun H, Zhang KY, Yang H, Yu Q, Zhou X, Guo S, Liu S, Huang W (2015) Adv Opt Mater 3:368

    Article  CAS  Google Scholar 

  16. Sun H, Liu S, Lin W, Zhang KY, Lv W, Huang X, Huo F, Yang H, Jenkins G, Zhao Q, Huang W (2014) Nat Commun 5:3601

    Google Scholar 

  17. Zhang KY, Chen X, Sun G, Zhang T, Liu S, Zhao Q, Huang W (2016) Adv Mater 28:7137

    Article  CAS  Google Scholar 

  18. Rascón-Ramos H, Artés JM, Li Y, Hihath J (2015) Nat Mater 14:517

    Article  Google Scholar 

  19. Schwarz F, Kastlunger G, Lissel F, Egler-Lucas C, Semenov SN, Venkatesan K, Berke H, Stadler R, Lortscher E (2016) Nat Nano 11:170

    Article  CAS  Google Scholar 

  20. Zhang W, Gan S, Vezzoli A, Davidson RJ, Milan DC, Luzyanin KV, Higgins SJ, Nichols RJ, Beeby A, Low PJ, Li B, Niu L (2016) ACS Nano 10:5212

    Article  CAS  Google Scholar 

  21. Li Z, Smeu M, Afsari S, Xing Y, Ratner MA, Borguet E (2014) Angew Chem Int Ed 53:1098

    Article  CAS  Google Scholar 

  22. Huang C, Chen S, Baruel Ornso K, Reber D, Baghernejad M, Fu Y, Wandlowski T, Decurtins S, Hong W, Thygesen KS, Liu SX (2015) Angew Chem Int Ed 54:14304

    Article  CAS  Google Scholar 

  23. Zhang JL, Zhong JQ, Lin JD, Hu WP, Wu K, Xu GQ, Wee AT, Chen W (2015) Chem Soc Rev 44:2998

    Article  CAS  Google Scholar 

  24. Tao NJ (2006) Nat Nano 1:173

    Article  CAS  Google Scholar 

  25. Xiang D, Jeong H, Lee T, Mayer D (2013) Adv Mater 25:4845

    Article  CAS  Google Scholar 

  26. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  27. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  28. Thompson SE, Parthasarathy S (2006) Mater Today 9:20

    Article  CAS  Google Scholar 

  29. Ajayan PM, Ebbesen TW (1997) Rep Prog Phys 60:1025

    Article  CAS  Google Scholar 

  30. Tans SJ, Verschueren ARM, Dekker C (1998) Nature 393:49

    Article  CAS  Google Scholar 

  31. Dai H (2002) Acc Chem Res 35:1035

    Article  CAS  Google Scholar 

  32. Robertson J (2007) Mater Today 10:36

    Article  CAS  Google Scholar 

  33. Feldman AK, Steigerwald ML, Guo X, Nuckolls C (2008) Acc Chem Res 41:1731

    Article  CAS  Google Scholar 

  34. Cao Y, Dong S, Liu S, He L, Gan L, Yu X, Steigerwald ML, Wu X, Liu Z, Guo X (2012) Angew Chem Int Ed 51:12228

    Article  CAS  Google Scholar 

  35. Liu S, Guo X (2012) NPG Asia Mater 4:e23

    Article  Google Scholar 

  36. Guo X (2013) Adv Mater 25:3397

    Article  CAS  Google Scholar 

  37. Perrin ML, Burzuri E, van der Zant HSJ (2015) Chem Soc Rev 44:902

    Article  CAS  Google Scholar 

  38. Jia C, Ma B, Xin N, Guo X (2015) Acc Chem Res 48:2565

    Article  CAS  Google Scholar 

  39. Sun L, Diaz-Fernandez YA, Gschneidtner TA, Westerlund F, Lara-Avila S, Moth-Poulsen K (2014) Chem Soc Rev 43:7378

    Article  CAS  Google Scholar 

  40. Prins F, Barreiro A, Ruitenberg JW, Seldenthuis JS, Aliaga-Alcalde N, Vandersypen LMK, van der Zant HSJ (2011) Nano Lett 11:4607

    Article  CAS  Google Scholar 

  41. Guo X, Small JP, Klare JE, Wang Y, Purewal MS, Tam IW, Hong BH, Caldwell R, Huang L, O’Brien S, Yan J, Breslow R, Wind SJ, Hone J, Kim P, Nuckolls C (2006) Science 311:356

    Article  CAS  Google Scholar 

  42. Liu S, Zhang X, Luo W, Wang Z, Guo X, Steigerwald ML, Fang X (2011) Angew Chem Int Ed 50:2496

    Article  CAS  Google Scholar 

  43. Wang H, Muren NB, Ordinario D, Gorodetsky AA, Barton JK, Nuckolls C (2012) Chem Sci 3:62

    Article  CAS  Google Scholar 

  44. Cao Y, Dong S, Liu S, Liu Z, Guo X (2013) Angew Chem Int Ed 52:3906

    Article  CAS  Google Scholar 

  45. Whalley AC, Steigerwald ML, Guo X, Nuckolls C (2007) J Am Chem Soc 129:12590

    Article  CAS  Google Scholar 

  46. Gao L, Li LL, Wang X, Wu P, Cao Y, Liang B, Li X, Lin Y, Lu Y, Guo X (2015) Chem Sci 6:2469

    Article  CAS  Google Scholar 

  47. Darwish N, Aragones AC, Darwish T, Ciampi S, Diez-Perez I (2014) Nano Lett 14:7064

    Article  CAS  Google Scholar 

  48. Jia C, Wang J, Yao C, Cao Y, Zhong Y, Liu Z, Liu Z, Guo X (2013) Angew Chem Int Ed 52:8666

    Article  CAS  Google Scholar 

  49. Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu D-H, Tian H, Ratner MA, Xu HQ, Nitzan A, Guo X (2016) Science 352:1443

    Article  CAS  Google Scholar 

  50. Quek SY, Kamenetska M, Steigerwald ML, Choi HJ, Louie SG, Hybertsen MS, Neaton JB, Venkataraman L (2009) Nat Nano 4:230

    Article  CAS  Google Scholar 

  51. Su TA, Li H, Steigerwald ML, Venkataraman L, Nuckolls C (2015) Nat Chem 7:215

    Article  CAS  Google Scholar 

  52. Baghernejad M, Zhao X, Baruel Ornso K, Fueg M, Moreno-Garcia P, Rudnev AV, Kaliginedi V, Vesztergom S, Huang C, Hong W, Broekmann P, Wandlowski T, Thygesen KS, Bryce MR (2014) J Am Chem Soc 136:17922

    Article  CAS  Google Scholar 

  53. Kiguchi M, Ohto T, Fujii S, Sugiyasu K, Nakajima S, Takeuchi M, Nakamura H (2014) J Am Chem Soc 136:7327

    Article  CAS  Google Scholar 

  54. Li L, Lo WY, Cai Z, Zhang N, Yu L (2016) Chem Sci 7:3137

    Article  CAS  Google Scholar 

  55. Sorgenfrei S, Chiu C-Y, Gonzalez RL, Yu Y-J, Kim P, Nuckolls C, Shepard KL (2011) Nat Nano 6:126

    Article  CAS  Google Scholar 

  56. Choi Y, Moody IS, Sims PC, Hunt SR, Corso BL, Perez I, Weiss GA, Collins PG (2012) Science 335:319

    Article  CAS  Google Scholar 

  57. Liu S, Clever GH, Takezawa Y, Kaneko M, Tanaka K, Guo X, Shionoya M (2011) Angew Chem Int Ed 50:8886

    Article  CAS  Google Scholar 

  58. Guo S, Artés JM, Díez-Pérez I (2013) Electrochim Acta 110:741

    Article  CAS  Google Scholar 

  59. Osorio HM, Catarelli S, Cea P, Gluyas JB, Hartl F, Higgins SJ, Leary E, Low PJ, Martin S, Nichols RJ, Tory J, Ulstrup J, Vezzoli A, Milan DC, Zeng Q (2015) J Am Chem Soc 137:14319

    Article  CAS  Google Scholar 

  60. Kay NJ, Higgins SJ, Jeppesen JO, Leary E, Lycoops J, Ulstrup J, Nichols RJ (2012) J Am Chem Soc 134:16817

    Article  CAS  Google Scholar 

  61. Chen F, He J, Nuckolls C, Roberts T, Klare JE, Lindsay S (2005) Nano Lett 5:503

    Article  CAS  Google Scholar 

  62. Xu BQ, Li XL, Xiao XY, Sakaguchi H, Tao NJ (2005) Nano Lett 5:1491

    Article  CAS  Google Scholar 

  63. Xiao X, Nagahara LA, Rawlett AM, Tao N (2005) J Am Chem Soc 127:9235

    Article  CAS  Google Scholar 

  64. He J, Fu Q, Lindsay S, Ciszek JW, Tour JM (2006) J Am Chem Soc 128:14828

    Article  CAS  Google Scholar 

  65. Xiao X, Brune D, He J, Lindsay S, Gorman CB, Tao N (2006) Chem Phys 326:138

    Article  CAS  Google Scholar 

  66. Darwish N, Díez-Pérez I, Guo S, Tao N, Gooding JJ, Paddon-Row MN (2012) J Phys Chem C 116:21093

    Article  CAS  Google Scholar 

  67. Darwish N, Diez-Perez I, Da Silva P, Tao N, Gooding JJ, Paddon-Row MN (2012) Angew Chem Int Ed 51:3203

    Article  CAS  Google Scholar 

  68. Xu, Xiao, Yang X, Zang L, Tao (2005) J Am Chem Soc 127:2386

    Article  CAS  Google Scholar 

  69. Li, Hihath J, Chen F, Masuda T, Zang L, Tao (2007) J Am Chem Soc 129:11535

    Article  CAS  Google Scholar 

  70. Li Z, Li H, Chen S, Froehlich T, Yi C, Schonenberger C, Calame M, Decurtins S, Liu SX, Borguet E (2014) J Am Chem Soc 136:8867

    Article  CAS  Google Scholar 

  71. Díez-Pérez I, Li Z, Guo S, Madden C, Huang H, Che Y, Yang X, Zang L, Tao N (2012) ACS Nano 6:7044

    Article  Google Scholar 

  72. Pia EAD, Chi Q, Jones DD, Macdonald JE, Ulstrup J, Elliott M (2011) Nano Lett 11:176

    Article  Google Scholar 

  73. Albrecht T, Guckian A, Kuznetsov AM, Vos JG, Ulstrup J (2006) J Am Chem Soc 128:17132

    Article  CAS  Google Scholar 

  74. Capozzi B, Chen Q, Darancet P, Kotiuga M, Buzzeo M, Neaton JB, Nuckolls C, Venkataraman L (2014) Nano Lett 14:1400

    Article  CAS  Google Scholar 

  75. Rocha AR, Garcia-suarez VM, Bailey SW, Lambert CJ, Ferrer J, Sanvito S (2005) Nat Mater 4:335

    Article  CAS  Google Scholar 

  76. Hayakawa R, Karimi MA, Wolf J, Huhn T, Zollner MS, Herrmann C, Scheer E (2016) Nano Lett 16:4960

    Article  CAS  Google Scholar 

  77. Frisenda R, Harzmann GD, Celis Gil JA, Thijssen JM, Mayor M, van der Zant HS (2016) Nano Lett 16:4733

    Article  CAS  Google Scholar 

  78. Wagner S, Kisslinger F, Ballmann S, Schramm F, Chandrasekar R, Bodenstein T, Fuhr O, Secker D, Fink K, Ruben M, Weber HB (2013) Nat Nano 8:575

    Article  CAS  Google Scholar 

  79. Aragones AC, Aravena D, Cerda JI, Acis-Castillo Z, Li H, Real JA, Sanz F, Hihath J, Ruiz E, Diez-Perez I (2016) Nano Lett 16:218

    Article  CAS  Google Scholar 

  80. Brooke RJ, Jin C, Szumski DS, Nichols RJ, Mao BW, Thygesen KS, Schwarzacher W (2015) Nano Lett 15:275

    Article  CAS  Google Scholar 

  81. Meded V, Bagrets A, Arnold A, Evers F (2009) Small 5:2218

    Article  CAS  Google Scholar 

  82. Lewis PA, Inman CE, Yao Y, Tour JM, Hutchison JE, Weiss PS (2004) J Am Chem Soc 126:12214

    Article  CAS  Google Scholar 

  83. Blum AS, Kushmerick JG, Long DP, Patterson CH, Yang JC, Henderson JC, Yao Y, Tour JM, Shashidhar R, Ratna BR (2005) Nat Mater 4:167

    Article  CAS  Google Scholar 

  84. Meng F, Hervault YM, Shao Q, Hu B, Norel L, Rigaut S, Chen X (2014) Nat Commun 5:3023

    Article  Google Scholar 

  85. Meng F, Hervault Y-M, Norel L, Costuas K, Van Dyck C, Geskin V, Cornil J, Hng HH, Rigaut S, Chen X (2012) Chem Sci 3:3113

    Article  CAS  Google Scholar 

  86. Wesenhagen P, Areephong J, Fernandez Landaluce T, Heureux N, Katsonis N, Hjelm J, Rudolf P, Browne WR, Feringa BL (2008) Langmuir 24:6334

    Article  CAS  Google Scholar 

  87. Logtenberg H, van der Velde JHM, de Mendoza P, Areephong J, Hjelm J, Feringa BL, Browne WR (2012) J Phys Chem C 116:24136

    Article  CAS  Google Scholar 

  88. van der Molen SJ, Liao J, Kudernac T, Agustsson JS, Bernard L, Calame M, van Wees BJ, Feringa BL, Schönenberger C (2009) Nano Lett 9:76

    Article  Google Scholar 

  89. van Leeuwen T, Pijper TC, Areephong J, Feringa BL, Browne WR, Katsonis N (2011) J Mater Chem 21:3142

    Article  Google Scholar 

  90. Arramel, Pijper TC, Kudernac T, Katsonis N, van der Maas M, Feringa BL, van Wees BJ (2013) Nanoscale 5:9277

    Article  CAS  Google Scholar 

  91. Van Herpt JT, Areephong J, Stuart MCA, Browne WR, Feringa BL (2014) Chem Eur J 20:1737

    Article  Google Scholar 

  92. Guo X, Myers M, Xiao S, Lefenfeld M, Steiner R, Tulevski GS, Tang J, Baumert J, Leibfarth F, Yardley JT, Steigerwald ML, Kim P, Nuckolls C (2006) Proc Natl Acad Sci USA 103:11452

    Article  CAS  Google Scholar 

  93. Liu S, Wei Z, Cao Y, Gan L, Wang Z, Xu W, Guo X, Zhu D (2011) Chem Sci 2:796

    Article  CAS  Google Scholar 

  94. Cao Y, Liu S, Shen Q, Yan K, Li P, Xu J, Yu D, Steigerwald ML, Nuckolls C, Liu Z, Guo X (2009) Adv Funct Mater 19:2743

    Article  CAS  Google Scholar 

  95. Cao Y, Wei Z, Liu S, Gan L, Guo X, Xu W, Steigerwald ML, Liu Z, Zhu D (2010) Angew Chem Int Ed 49:6319

    Article  CAS  Google Scholar 

  96. Kim D, Jeong H, Lee H, Hwang WT, Wolf J, Scheer E, Huhn T, Jeong H, Lee T (2014) Adv Mater 26:3968

    Article  CAS  Google Scholar 

  97. Seo S, Min M, Lee SM, Lee H (2013) Nat Commun 4:1920

    Article  Google Scholar 

  98. Guo X, Xiao S, Myers M, Miao Q, Steigerwald ML, Nuckolls C (2009) Proc Natl Acad Sci USA 106:691

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Funds of China (21225311, 91333102, and 21373014) and the 973 Project (2012CB921404 and 2012CB921403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Guo.

Additional information

This article is part of the Topical Collection “Molecular-Scale Electronics: Current Status and Perspective”; edited by Xuefeng Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Ren, S. & Guo, X. Switching Effects in Molecular Electronic Devices. Top Curr Chem (Z) 375, 56 (2017). https://doi.org/10.1007/s41061-017-0144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0144-5

Keywords

Navigation