Skip to main content
Log in

The Effect of Alkaline Solution-to-Slag Ratio on Permeability of Alkali Activated Slag Concrete

  • Research paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

This study investigated the effect of alkaline solution-to-slag ratio on permeability of Alkali Activated Slag Concrete (AASC). Permeability of concrete has a direct impact on its durability, so, in this study, a series of tests were arranged to examine the effect of alkaline solution-to-slag ratio on water impermeability, chloride permeability, short-term and total water absorption, and compressive strength of AASC specimens. In experimental study, four concrete mixes with alkaline solution-to-slag ratios of 0.4, 0.45, 0.50, and 0.55 were considered. One mix made by ordinary Portland cement was also considered for comparison of the results. In general, AASC outperformed the Portland cement concrete. In addition, the results showed that the alkaline solution/slag ratios of 0.45 are the optimum value for AASC mixes from the durability and permeability point of view. Based on the results, there is only a slight difference between short-term water absorption and total water absorption of AASC samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Behfarnia K, Behravan A (2014) Application of high performance polypropylene fibers in concrete lining of water tunnels. Mater Des 55:274–279. doi:10.1016/j.matdes.2013.09.075

    Article  Google Scholar 

  2. Malhotra VM, Mehta PK (2005) High-performance, high-volume fly ash concrete: materials, mixture, proportioning, properties, construction practice, and case histories, Ottawa

  3. Rangan BV, Hardjto D (2005) Development and properties of low calcium fly ash based geopolymer concrete”. Research report GC-1, Faculty of Engineering, Curtins University of Technology, Perth, Australia

  4. Palomo A, Fernández-Jiménez A, López Hombrados C, Lleyda JL (2007) Railway sleepers made of alkali activated fly ash concrete. Revista Ingeniería 22:75–80. doi:10.4067/S0718-50732007000200001

    Google Scholar 

  5. Gartner E (2004) Industrially interesting approaches to low CO2 cements. Cem Concr Res 34:1489–1498. doi:10.1016/j.cemconres.2004.01.021

    Article  Google Scholar 

  6. Davidovits J (1994) Global warming impact on the cement and aggregate industries. World Resour Rev 6(2):263–278

    Google Scholar 

  7. Junaid MT, Khennane A, Kayali O, Sadaoui A, Picard D, Fafard M (2014) Aspects of the deformational behaviour of alkali activated fly ash concrete at elevated temperatures. Cem Concr Res 60:24–29. doi:10.1016/j.cemconres.2014.01.026

    Article  Google Scholar 

  8. Delatte JAFG (1993) From ancient concrete to geopolymers. Arts Metiers Mag 8–16

  9. Juenger M, Winnefeld F, Provis J, Ideker J (2011) Advances in alternative cementitious binders. Cem Concr Res 41:1232–1243. doi:10.1016/j.cemconres.2010.11.012

    Article  Google Scholar 

  10. Shojaei M, Behfarnia K, Mohebi R (2015) Application of alkali-activated slag concrete in railway sleepers. Mater Des 69:89–95. doi:10.1016/j.matdes.2014.12.051

    Article  Google Scholar 

  11. Mohebi R, Behfarnia K, Shojaei M (2015) Abrasion resistance of alkali-activated slag concrete designed by Taguchi method. Constr Build Mater 98:792–798. doi:10.1016/j.conbuildmat.2015.08.128

    Article  Google Scholar 

  12. Ahmadi S, Nouranian H (2010) Alkali-activated slag cement. Iran Ceramic 20:29–39

    Google Scholar 

  13. Shi Z, Shi C, Zhao R, Wan S (2015) Comparison of alkali–silica reactions in alkali-activated slag and Portland cement mortars. Mater Struct 48(3):743–751. doi:10.1617/s11527-015-0535-4

    Article  Google Scholar 

  14. Rashad AM, Zeedan SR, Hassan AA (2016) Influence of the activator concentration of sodium silicate on the thermal properties of alkali-activated slag pastes. Constr Build Mater 102:811–820. doi:10.1016/j.conbuildmat.2015.11.023

    Article  Google Scholar 

  15. Rashad AM, Sadek DM, Hassan HA (2016) An investigation on blast-furnace stag as fine aggregate in alkali-activated slag mortars subjected to elevated temperatures. J Clean Prod 112:1086–1096. doi:10.1016/j.jclepro.2015.07.127

    Article  Google Scholar 

  16. Türker HT, Balçikanli M, Durmuş İH, Özbay E, Erdemir M (2016) Microstructural alteration of alkali activated slag mortars depend on exposed high temperature level. Constr Build Mater 104:169–180. doi:10.1016/j.conbuildmat.2015.12.070

    Article  Google Scholar 

  17. Turkmen I, Maras MM, Karakoc MB, Demirboga R, Kantarci F (2013) Fire resistance of geopolymer concrete produced from Ferrochrome slag by alkali activation method. In: 2013 International Conference on Renewable Energy Research and Applications (ICRERA), pp 58–63. IEEE

  18. Karakoç MB, Türkmen İ, Maraş MM, Kantarci F, Demirboğa R, Toprak MU (2014) Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr Build Mater 72:283–292. doi:10.1016/j.conbuildmat.2014.09.021

    Article  Google Scholar 

  19. Karakoç MB, Türkmen İ, Maraş MM, Kantarci F, Demirboğa R (2016) Sulfate resistance of ferrochrome slag based geopolymer concrete. Ceram Int 42(1):1254–1260. doi:10.1016/j.ceramint.2015.09.058

    Article  Google Scholar 

  20. Neville AM, Brooks JJ (1987) Concrete technology

  21. Roy DM, Jiang W, Silsbee MR (2000) Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties. Cem Concr Res 30:1879–1884. doi:10.1016/S0008-8846(00)00406-3

    Article  Google Scholar 

  22. Bakharev T, Sanjayan JG, Cheng YB (2002) Sulphate attack on alkali-activated slag concrete. Cem Concr Res 32:211–216. doi:10.1016/S0008-8846(01)00659-7

    Article  Google Scholar 

  23. Bakharev T, Sanjayan JG, Cheng YB (2003) Resistance of alkali-activated slag concrete to acid attack. Cem Concr Res 33:1607–1611. doi:10.1016/S0008-8846(03)00125-X

    Article  Google Scholar 

  24. Puertas F, Fernandez-Jimenez A (2003) Mineralogical and microstructural characterization of alkali-activated fly ash/slag pastes. Cem Concr Compos 25:287–292. doi:10.1016/S0958-9465(02)00059-8

    Article  Google Scholar 

  25. Chen W, Brouwers HJH (2007) The hydration of slag, part 1: reaction models for alkali-activated slag. J Mater Sci 42:428–443. doi:10.1007/s10853-006-0873-2

    Article  Google Scholar 

  26. Bilim C, Karahan O, Atis CD, Ilkentapar S (2013) Influence of admixtures on the properties of alkali-activated slag mortars subjected to different curing conditions. Mater Des 44:540–547. doi:10.1016/j.matdes.2012.08.049

    Article  Google Scholar 

  27. Allahverdi A, Hashemi H (2015) Investigating the resistance of alkali-activated slag mortar exposed to magnesium sulfate attack. Int J Civ Eng 13:379–387. doi:10.22068/IJCE.13.4.379

    Google Scholar 

  28. Türkmen İ, Karakoç MB, Kantarcı F, Maraş MM, Demirboğa R (2016) Fire resistance of geopolymer concrete produced from Elazığ ferrochrome slag. Fire Mater

  29. Davidovits J (1991) Geopolymers. J Therm Anal Calorim 37(8):1633–1656. doi:10.1007/BF01912193

    Article  Google Scholar 

  30. Rashad AM (2014) A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Mater Des 53:1005–1025. doi:10.1016/j.matdes.2013.07.074

    Article  Google Scholar 

  31. Maghsoodloorad H, Allahverdi A (2016) Efflorescence formation and control in alkali-activated phosphorus slag cement. Int J Civ Eng 14:425–438. doi:10.1007/s40999-016-0027-0

    Article  Google Scholar 

  32. Balcikanli M, Ozbay E (2016) Optimum design of alkali activated slag concretes for the low oxygen/chloride ion permeability and thermal conductivity. Compos B Eng 91:243–256. doi:10.1016/j.compositesb.2016.01.047

    Article  Google Scholar 

  33. Singh SP, Murmu M (2017) Effects of curing temperature on strength of lime-activated slag cement. Int J Civ Eng. doi:10.1007/s40999-017-0166-y

  34. Xu H, Provis JL, van Deventer JS, Krivenko PV (2008) Characterization of aged slag concretes. ACI Mater J 105(2):131–139

    Google Scholar 

  35. ASTM C33 (2003) Standard specification for concrete aggregates. Annual Book of ASTM Standards, 04-02

  36. ASTM C127 (2003) Standard test method for density, relative density (Specific Gravity), and Absorption of Coarse Aggregate. Annual Book of ASTM Standards, Philadelphia, 04-02

  37. ASTM C143 (2003) Test Method for slump of hydraulic cement concrete. Annual Book of ASTM Standards, 04-02

  38. BS 1881: part 5 (1970) Testing concrete: methods of testing hardened concrete for other than strength. British Standard Institution, London

  39. ASTM C642 (2003) Standard test method for density, absorption, and voids in hardened concrete. Annual Book of ASTM Standards, Philadelphia, 04-02

  40. ASTM C1202 (2003) Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. Annual Book of ASTM Standards, Philadelphia, 04-02

  41. EN 12390-8 (2000) Testing hardened concrete—Part 8: Depth of penetration of water under pressure. European Committee for Standardization

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiachehr Behfarnia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behfarnia, K., Rostami, M. The Effect of Alkaline Solution-to-Slag Ratio on Permeability of Alkali Activated Slag Concrete. Int J Civ Eng 16, 897–904 (2018). https://doi.org/10.1007/s40999-017-0234-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40999-017-0234-3

Keywords

Navigation