Skip to main content

Advertisement

Log in

GIS-Based Landslide Susceptibility Mapping in Qazvin Province of Iran

  • Technical Note
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

Landslides pose serious life and property losses annually around the world. In the present research, the analytical hierarchy process (AHP) is applied for landslide hazard zonation of Qazvin Province, Iran. Qazvin Province, located in the Central Basin of Iran with an area of 15,821 km2, occupies 1% of Iran’s total area. This province is located between longitudes 48° 45′ to 50° 50 E and latitudes 35° 37′ and 36° 45′ N. In the present work, the effect of geomorphological (slope and aspect), geological (lithology, slope difference, strata slope, earthquake acceleration, ground aspect difference, and strata aspect), and engineering geology (point load index, geological strength index, specific gravity, cohesion, internal friction angle, weathering, and condition of discontinuities) parameters is investigated on landslide occurrence through the AHP method. After analysis of the obtained data in ArcGIS software, the effect of each information layer on landslide occurrence was determined and zoning was done. The results obtained by comparing the prepared zoning map and distribution of the occurred landslides show the high accuracy of the AHP method for landslide zoning in Qazvin Province.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

  • Achour Y, Boumezbeur A, Hadji R, Chouabbi A, Cavaleiro V, Bendaoud EA (2017) Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arab J Geosci 10:194

    Article  Google Scholar 

  • Arab Amiri M, Conoscenti C (2017) Landslide susceptibility mapping using precipitation data, Mazandaran Province, north of Iran. Nat Hazards 89:255–273. https://doi.org/10.1007/s11069-017-2962-8

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31

    Article  Google Scholar 

  • Aydin A (2015) The ISRM suggested methods for rock characterization. Test Monit 2007–2014:2007–2014. https://doi.org/10.1007/978-3-319-07713-0

    Article  Google Scholar 

  • Bieniawski ZT (1989) Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. Wiley, Hoboken

    Google Scholar 

  • Boualla O, Mehdi K, Fadili A, Makan A, Zourarah B (2019) GIS-based landslide susceptibility mapping in the Safi region, West Morocco. Bull Eng Geol Environ 78:2009–2026

    Article  Google Scholar 

  • Bourenane H, Guettouche MS, Bouhadad Y, Braham M (2016) Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evidence, and analytical hierarchy process methods. Arab J Geosci 9:154

    Article  Google Scholar 

  • Cevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44:949–962

    Article  Google Scholar 

  • Chacón J, Irigaray C, Fernández T (1994) Large to middle scale landslides inventory, analysis and mapping with modelling and assessment of derived susceptibility, hazards and risks in a GIS. In: Proceedings of 7th IAEG congress, Balkema, Rotterdam. pp 4669–4678

  • Eberhardt E, Thuro K, Luginbuehl M (2005) Slope instability mechanisms in dipping interbedded conglomerates and weathered marls the 1999 Rufi landslide, Switzerland. Eng Geol 77:35–56

    Article  Google Scholar 

  • Fernández T, Jiménez J, Delgado J, Cardenal J, Pérez JL, El Hamdouni R, Irigaray C, Chacón J (2013) Methodology for landslide susceptibility and hazard mapping using GIS and SDI. In: Intelligent systems for crisis management. Springer, Berlin, Heidelberg, pp 185–198

  • Gao FZÆ, Chen LÆW, Bai WHÆS (2010) Engineering geology and stability of the Jishixia landslide, Yellow River, China. Bull Eng Geol Environ 69:99–103. https://doi.org/10.1007/s10064-009-0224-z

    Article  Google Scholar 

  • Ghafoori M, Rastegarnia A, Lashkaripour GR (2018) Estimation of static parameters based on dynamical and physical properties in limestone rocks. J Afr Earth Sci 137:22–31. https://doi.org/10.1016/j.jafrearsci.2017.09.008

    Article  Google Scholar 

  • Ghobadi MH (1994) Engineering geologic factors influencing the stability of slopes in the Northern Illawarra region. Doctor of philosophy thesis, Department of civil and engineering, University of Wollongong. http://ro.uow.edu.au/thesis/1244  

  • Hasekioǧullari GD, Ercanoglu M (2012) A new approach to use AHP in landslide susceptibility mapping: a case study at Yenice (Karabuk, NW Turkey). Nat Hazards 63:1157–1179. https://doi.org/10.1007/s11069-012-0218-1

    Article  Google Scholar 

  • Hoek E, Bray JD (1981) Rock slope engineering. CRC Press, Boca Raton

    Google Scholar 

  • Hoek E, Diederichs MS (2006) Empirical estimation of rock mass modulus. Int J Rock Mech Min Sci 43:203–215. https://doi.org/10.1016/j.ijrmms.2005.06.005

    Article  Google Scholar 

  • Hoek E, Carranza C, Corkum B (2002) Hoek-brown failure criterion—2002 edition. Narms-Tac pp 267–273. https://doi.org/10.1016/0148-9062(74)91782-3

  • Hungr O, Evans SG, Hutchinson IN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7:221–238

    Article  Google Scholar 

  • Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11:425–439

    Article  Google Scholar 

  • Kayastha P, Dhital MR, De Smedt F (2013) Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal. Comput Geosci 52:398–408. https://doi.org/10.1016/j.cageo.2012.11.003

    Article  Google Scholar 

  • Lashkaripour GR, Rastegarnia A, Ghafoori M (2018) Assessment of brittleness and empirical correlations between physical and mechanical parameters of the Asmari limestone in Khersan 2 dam site, in southwest of Iran. J Afr Earth Sci 138:124–132. https://doi.org/10.1016/j.jafrearsci.2017.11.003

    Article  Google Scholar 

  • Look BG (2014) Handbook of geotechnical investigation and design tables. CRC Press, Boca Raton

    Google Scholar 

  • Mandal S, Mandal K (2018) Modeling and mapping landslide susceptibility zones using GIS based multivariate binary logistic regression (LR) model in the Rorachu river basin of eastern Sikkim Himalaya, India. Model Earth Syst Environ 4:69–88

    Article  Google Scholar 

  • Marinoni O, Higgins A, Hajkowicz S, Collins K (2009) The multiple criteria analysis tool (MCAT): a new software tool to support environmental investment decision making. Environ Model Softw 24:153–164

    Article  Google Scholar 

  • Marinos P, Hoek E (2000) GSI: a geologically friendly tool for rock mass strength estimation. In: ISRM international symposium

  • Marjanović M, Kovačević M, Bajat B, Voženilek V (2011) Landslide susceptibility assessment using SVM machine learning algorithm. Eng Geol 123:225–234

    Article  Google Scholar 

  • Meng Q, Miao F, Zhen J, Wang X, Wang A, Peng Y, Fan Q (2015) GIS-based landslide susceptibility mapping with logistic regression, analytical hierarchy process, and combined fuzzy and support vector machine methods: a case study from Wolong Giant Panda Natural Reserve, China. Bull Eng Geol Environ 75:923–944. https://doi.org/10.1007/s10064-015-0786-x

    Article  Google Scholar 

  • Mondal S, Maiti R (2012) Landslide susceptibility analysis of Shiv-Khola Watershed, Darjiling: a remote sensing and GIS based analytical hierarchy process (AHP). J Indian Soc Remote 40:483–496. https://doi.org/10.1007/s12524-011-0160-9

    Article  Google Scholar 

  • Moreiras SM (2004) Landslide incidence zonation in the Rio Mendoza valley, Mendoza province, Argentina. Earth Surf Process Landf 29:255–266

    Article  Google Scholar 

  • Mostafaei M, Rezaei Far AH, Rastegarnia A (2019) Assessment of the impact of case parameters affecting abrasion and brittleness factors in alluviums of line 2 of theTabriz subway, Iran. Bull Eng Geol Environ 78:3851–3861. https://doi.org/10.1007/s10064-018-1350-2

    Article  Google Scholar 

  • Nibigira L, Draidia S, Havenith H-B (2015) GIS-based landslide susceptibility mapping in the Great Lakes region of Africa, Case study of Bujumbura Burundi. In: Engineering geology for society and territory-volume 2. Springer, pp 985–988

  • Panahi M, Rezaie F, Meshkani SA (2014) Seismic vulnerability assessment of school buildings in Tehran city based on AHP and GIS. Nat Hazard Earth Syst 14:969–979. https://doi.org/10.5194/nhess-14-969-2014

    Article  Google Scholar 

  • Peng X, Yu P, Zhang Y, Chen G (2018) Applying modified discontinuous deformation analysis to assess the dynamic response of sites containing discontinuities. Eng Geol 246:349–360

    Article  Google Scholar 

  • Peng X, Chen G, Yu P, Zhang Y, Wang J (2019) Improvement of joint definition and determination in three-dimensional discontinuous deformation analysis. Comput Geotech 110:148–160

    Article  Google Scholar 

  • Poorbehzadi K, Yazdi A, Teshnizi ES, Dabiri R (2019) Investigating of Geotechnical parameters of alluvial foundation in Zaram-Rud Dam Site, North Iran. Int J Min Geo-Eng Tech 1:33–44

    Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63:965–996. https://doi.org/10.1007/s11069-012-0217-2

    Article  Google Scholar 

  • Quan H-C, Lee B-G (2012) GIS-based landslide susceptibility mapping using analytic hierarchy process and artificial neural network in Jeju (Korea). KSCE J Civ Eng 16:1258–1266

    Article  Google Scholar 

  • Rahimi E, Sharifi Teshnizi E, Rastegarnia A, Motamed Al-Shariati E (2019) Cement take estimation using neural networks and statistical analysis in Bakhtiari and Karun 4 dam sites, in south west of Iran. Bull Eng Geol Environ 78:2817–2834. https://doi.org/10.1007/s10064-018-1271-0

    Article  Google Scholar 

  • Rastegar Nia A, Lashkaripour GR, Ghafoori M (2017) Prediction of grout take using rock mass properties. Bull Eng Geol Environ 76:1643–1654. https://doi.org/10.1007/s10064-016-0956-5

    Article  Google Scholar 

  • Rastegarnia A, Sohrabibidar A, Bagheri V, Razifard M, Zolfaghari A (2017) Assessment of relationship between grouted values and calculated values in the Bazoft Dam Site. Geotech Geol Eng 35:1299–1310. https://doi.org/10.1007/s10706-017-0176-1

    Article  Google Scholar 

  • Rastegarnia A, Lashkaripour GR, Ghafoori M, Farrokhad SS (2018a) Assessment of the engineering geological characteristics of the Bazoft dam site. Q J Eng Geol Hydrogeol. https://doi.org/10.1144/qjegh2017-042

    Article  Google Scholar 

  • Rastegarnia A, Teshnizi ES, Hosseini S, Shamsi H, Etemadifar M (2018b) Estimation of punch strength index and static properties of sedimentary rocks using neural networks in south west of Iran. Measurement 128:464–478. https://doi.org/10.1016/j.Measurement.2018.05.080

    Article  Google Scholar 

  • Ren F, Wu X (2014) GIS-based landslide susceptibility mapping using remote sensing data and machine learning methods. In: Cartography from pole to pole. Springer, Berlin, Heidelberg, pp 319–333

  • Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281

    Article  MathSciNet  Google Scholar 

  • Saaty TL (1986) Axiomatic foundation of the analytic hierarchy process. Manag Sci 32:841–855. https://doi.org/10.1287/mnsc.32.7.841

    Article  MathSciNet  MATH  Google Scholar 

  • Saaty TL (2006) Rank from comparisons and from ratings in the analytic hierarchy/network processes. Eur J Oper Res 168:557–570

    Article  MathSciNet  Google Scholar 

  • Saaty TL, Vargas LG (2012) Models, methods, concepts and applications of the analytic hierarchy process. Springer, Berlin

    Book  Google Scholar 

  • Sangchini EK, Emami SN, Tahmasebipour N, Pourghasemi HR, Naghibi SA, Arami SA, Pradhan B (2016) Assessment and comparison of combined bivariate and AHP models with logistic regression for landslide susceptibility mapping in the Chaharmahal-e-Bakhtiari Province, Iran. Nat Hazards 9:201

    Google Scholar 

  • Sarkar S, Kanungo DP (2017) GIS application in landslide susceptibility mapping of Indian Himalayas. In: GIS landslide. Springer, Tokyo, pp 211–219

  • Sohrabi-Bidar A, Rastegar-Nia A, Zolfaghari A (2016) Estimation of the grout take using empirical relationships (case study: bakhtiari dam site). Bull Eng Geol Environ 75:425–438. https://doi.org/10.1007/s10064-015-0754-5

    Article  Google Scholar 

  • Stanley T, Kirschbaum DB (2017) A heuristic approach to global landslide susceptibility mapping. Nat Hazards 87:145–164. https://doi.org/10.1007/s11069-017-2757-y

    Article  Google Scholar 

  • Wang WD, Xie CM, Du XG (2009) Landslides susceptibility mapping based on geographical information system, GuiZhou, south-west China. Environ Geol 58:33–43. https://doi.org/10.1007/s00254-008-1488-5

    Article  Google Scholar 

  • Zhang J, Liu R, Deng W, Khanal NR, Gurung DR, Murthy MSR, Wahid S (2016) Characteristics of landslide in Koshi River basin, central Himalaya. J Mt Sci 13:1711–1722

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from Payame Noor University (PNU), Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Rastegarnia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjmandzadeh, R., Sharifi Teshnizi, E., Rastegarnia, A. et al. GIS-Based Landslide Susceptibility Mapping in Qazvin Province of Iran. Iran J Sci Technol Trans Civ Eng 44 (Suppl 1), 619–647 (2020). https://doi.org/10.1007/s40996-019-00326-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-019-00326-3

Keywords

Navigation