Skip to main content

Advertisement

Log in

On the effects of high loading of ZnO nanofiller on the structural, optical, impedance and dielectric features of PVA@ZnO nanocomposite films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Unabated interests are being globally expressed on the evaluation of ZnO-filled polyvinyl alcohol (PVA) nanocomposite films because of their prospects in optical, electrical, medical fields, etc. Nevertheless, this communication describes the fabrication of pore-free and freestanding nanocomposite films with PVA matrix and various high loading levels (5, 10 and 15 wt%) of ZnO as a filler by conventional solution-casting method. The filler ZnO powder was custom synthesised by a novel starch-assisted combustion (SAC) method. The films were characterized by various techniques to exemplify interesting modifications on incorporating the ZnO filler synthesized by SAC route. XRD confirms the increasing amorphous propensity of the PVA@ZnO films with increasing filler loading. FTIR implies the development of molecular complex of the polymer with the filler. Conductivity of the composites evaluated from impedance measurements depends on the morphology and amorphousity of the films. Decreasing trend in the real part of dielectric permittivity (Ɛ’) with increasing frequency as well filler loading was obvious. Optical band gap energy decreases with ZnO loading. A high loading of ZnO results in unique morphologies which are hitherto not observed an aspect which may be required for morphology-dependant applications. Therefore, the work evinces that by integrating PVA with high-loaded ZnO yields stable films with impressive conductivity and dielectric property bestowed with unique morphology, thereby revealing prospects in electromagnetic induction (EMI) and microwave absorption and shielding applications further to the known applications like in catalysis, antibacterials, optics and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Beecroft L, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9(6):1302–1317.

    Article  CAS  Google Scholar 

  2. Kumar RV, Elgamiel R, Diamant Y, Gedanken A (2001) Preparation and characterization of nanocrystalline copper oxide embedded in Poly(Vinyl Alcohol) and its effect on crystal growth of copper oxide. Langmuir 17(5):1406–1410.

    Article  CAS  Google Scholar 

  3. Tripathi S, Mehrotra GK, Dutta PK (2009) Physicochemical and bioactivity of cross-linked chitosan-PVA film for food packaging applications. Int J Biol Macromo 45(4):372–376

    Article  CAS  Google Scholar 

  4. Hino T, Namiki T, Kuramoto N (2006) Synthesis and characterization of novel conducting composites of polyaniline prepared in the presence of sodium dodecylsulfonate and several water soluble polymers. Synth Met 156(21–24):1327–1332

    Article  CAS  Google Scholar 

  5. Gomes AMM, da Silva PL, de Moura CL, da Silva CEM, Ricardo NMPS (2011) Study of the mechanical and biodegradable properties of Cassava Starch/Chitosan/PVA Blends. Macromol Symp 299–300(1):220–226

    Article  Google Scholar 

  6. Nik Aziz NA, Idris NK, Isa MIN (2010) Solid polymer electrolytes based on methylcellulose: FTIR and Ionic conductivity Studies. IJPAC 15(5):319–327

    CAS  Google Scholar 

  7. Muradov MB (2008) The influence of the type of polymer matrix on the photoluminescence from Cadmium Sulfide Nanoparticles. OAM-RC 2(2):85–88.

    CAS  Google Scholar 

  8. Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels prod uced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65

    Article  CAS  Google Scholar 

  9. Kokabi M, Sirousazar M, Hassan Z (2007) PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J 43:773–781

    Article  CAS  Google Scholar 

  10. Nagura M, Hamano T, Ishikawa H (1969) Structure of poly(vinyl alcohol) hydrogel prepared by repeated freezing and melting. Polym 30:762–765

    Article  Google Scholar 

  11. Scotchford CA, Cascone MG, Downed S, Giusti P (1998) Osteoblast responses to collagen-PVA bioartificial polymers in vitro: the effects of cross-linking method and collagen content. Biomaterials 19:1–11

    Article  CAS  Google Scholar 

  12. Rajesh TA, Kumar D (2009) Recent progress in the development of nano-structured conducting polymers/Nanocomposites for sensor applications. Sens Actuator B-Chem 136(1):275–286

    Article  CAS  Google Scholar 

  13. Nguyen TP (2011) Polymer-based nanocomposites for organic optoelectronic devices. A review Surf Coat Technol 206(4):742–752

    Article  CAS  Google Scholar 

  14. Kisku SK, Sarkar N, Dash S, Swain SK (2014) Preparation of starch/PVA/CaCO3 nanobiocomposite films: study of fire retardant. Thermal resistant, gas barrier and biodegradable properties. Polym-Plast Technol 53:1664–1670

    Article  CAS  Google Scholar 

  15. Liu M, Guo B, Du M, Jia D (2007) Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effect on properties of composite film. Appl Phys A Mater Sci Process 88:391–395

    Article  CAS  Google Scholar 

  16. Anji Reddy Polu, Ranveer Kumar (2011) AC impedance and dielectric spectroscopic studies of Mg2+ ion conducting PVA–PEG blended polymer electrolytes. Bull Mater Sci 34(5):1063–1067

  17. Siva devi S, Selvasekarapandian S, Karthikeyan S, Vijaya N, Kingaslin Mary Genova F, Sanjeeviraja C (2013) Structural and AC impedance ananlysis of blend polymer electrolyte based on PVA and PAN. IJSR 2(10):1–3.

  18. Kumar S, Prajapati GK, Saroj AL, Gupta PN (2019) Structural, electrical and dielectric studiesof nano-composite polymer blend electrolyte films based on (70–x) PVA-x, PVP-NaI-SiO2. Phys B 554:158–164

    Article  CAS  Google Scholar 

  19. Wang M, Lian Y, Wang X (2009) PPV/PVA/ZnO nanocomposite prepared by complex precursor method and its photovoltaic application. Curr Appl Phys 9:189–194

    Article  Google Scholar 

  20. Yang C-C, Lin S-J (2002) Preparation of composite alkaline polymer electrolyte. Mater 57:873–881

    CAS  Google Scholar 

  21. Tapas Kumar KunduNantu Karak, Puspendu Barik, Satyajit Saha (2011) Optical properties of Zno nanoparticles prepared by chemical method using poly (VinylAlcohol) (PVA) as capping agent. IJSCE 1:19–24

  22. Shadpour Mallakpour, Elham Khadem (2017) Poly(vinyl alcohol)/CaCO3-diacid nanocomposite: investigation of physical and wetting properties and application in heavy metal adsorption. J Appl Polym Sci 134(42):45414(1–10).

  23. Arora R (2017) Utam Kumar Mandal, Pankaj Sharma, Anupan Srivastav (2017) Nanocomposite film based on conducting polymer, SiO2 and PVA. Mater Today Proc 4:2733–2738

  24. Mohammed Gh., Adel M. El Sayed, Morsi WM (2018) Spectroscopic, thermal, and electrical properties of MgO/ polyvinyl pyrrolidone/ polyvinyl alcohol nanocomposites, J Phys Chem Solids 115:238–247.

  25. Ghanipour M, Dorranian D (2013) Effect of Ag-nanoparticles doped in polyvinyl alcohol on the structural and optical properties of PVA films. J Nanomater 2013:1–10

    Article  Google Scholar 

  26. Bhasha and Prunima Jain, Effect of Nanofiller on the Properties of PVA nanocomposites thin film, Proceeding of NCGE, (2017) 1–6.

  27. Mohan Lal, Verma SR (2017) Synthesis and characterization of poly vinyl alcohol functionalized iron oxide nanoparticles. Macromol Symp 376:1–5.

  28. Obula Reddy M, Chandra Babu B (2015) Structural, optical, electrical, and magnetic properties of PVA:Gd3+ and PVA:Ho3+ polymer films. IJMS, 1–8.

  29. Navin Chand, Neelesh Rai, Agrawal SL, Patel SK (2011) Morphology, thermal, electrical and electrochemical stability of nano aluminium-oxide-filled polyvinyl alcohol composite gel electrolyte. Bull Mater Sci 34(7):1297–1304.

  30. Lee J, Bhattacharyya D, Easteal AJ, Metson JB (2008) Properties of nano-ZnO/poly(vinyl alcohol)/poly(ethylene oxide) composite thin films. Curr Appl Phys 8:42–47

    Article  Google Scholar 

  31. Sui XM, Shao CL, Liu YC (2005) White-light emission of polyvinyl alcohol/ZnO hybrid nanofibers prepared by electrospinning. Appl Phys Lett 87:113115(1–3).

  32. Xiong M, Gu G, You B, Wu L (2003) Preparation and characterization of Poly(styrene butylacrylate) latex/Nano-ZnO nanocomposites. J Appl Polym Sci 90:1923–1931

    Article  CAS  Google Scholar 

  33. Heo YW, Norton DP, Tien LC, Kwon Y, Kang BS, Ren F, Pearton SJ, LaRoche JR (2004) ZnO nanowire growth and devices. Mater Sci Eng R Rep 47(1–2):1–47

    Article  Google Scholar 

  34. Fortunato EMC, Barquinha PMC, Pi-mentel ACMBG, Goncalves AMF, Marques AJS, Pereira LMN, Martins RFP (2005) Fully transparent ZnO thin-film transistor produced at room temperature. Adv Mater 17:590.

  35. Ammar M. Hamza , Alhtheal ED, Ali k. Shakir (2017) Enhancement the Efficiency of ZnOnanofiber mats antibacterial Using Novel PVA/Ag nanoparticles. Energy Proc 119:615–621.

  36. Hemalatha KS, Rukmani K, Suriyamurthy N, Nagabhushana BM (2014) Synthesis characterization and optical properties of hybrid PVA-ZnO nanocomposite: a composition dependent study. Mater Res Bull 51:438–446

    Article  CAS  Google Scholar 

  37. Hemalatha KS, Sriprakash G, Ambika Prasad MVN, Damle R, Rukmani K (2015) Temperature dependent dielectric and conductivity studies of polyvinyl alcohol-ZnO nanocomposite films by impedance spectroscopy. J Appl Phys 118:154103-1-14.

    Article  Google Scholar 

  38. Kalyani P, Kalaiselvi N, Muniyandi N (2002) A new solution combustion route to Synthesize LiCoO2 and LiMnO2. J Power Sources 111:232–238

    Article  CAS  Google Scholar 

  39. Aashis S. Roy, Satyajit Gupta, Sindhu S, Ameena Parveen, Praveen C. Ramamurthy (2013) Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Compos B Eng 47:314–319.

  40. Deepak Kumar, Suraj Karan Jat, Pawan K. Khanna, Vijayan N, Shaibal Banerjee (2012) Synthesis, characterization and Studies of PVA/Co-Doped ZnO nanocomposite films. Int J Green Nanotechnol 4:408–416.

  41. Mansour AF, Mansour SF, Abodo MA (2015) Improvement structural and optical properties of nanocomposites. IOSR J Appl Phys 7(2):60–69

    Google Scholar 

  42. Bouropoulos N, Psarras GC, Moustakas N, Chrissanthopoulos A, Baskoutas S (2008) Optical and dielectric properties of ZnO-PVA nanocomposites. Phys Status Solidi A 205(8):2033–2037

    Article  CAS  Google Scholar 

  43. Muhammad Aslam, Mazhar Ali kalyar, Zulfiqar Ali Raza (2018) Investigation of zinc oxide-loaded Poly(Vinyl Alcohol) nanocomposite films in tailoring their structural, optical and mechanical properties. J Electron Mater, 1–15.

  44. Elham Gharoy Ahangar, Mohammad Hossein Abbaspour-Fard, Nasser Shahtahmassebi, Mehdi Khojastehpour, Parisa Maddahi (2014) Preparation and characterization of PVA/ZnO nanocomposite. J Food Process Pres, ISSN 1745-4549.

  45. Karthikeyan B, Pandiyarajan T, Mangalaraja RV (2016) Enhanced blue light emission in transparent ZnO:PVA nanocomposite free standing polymer films. Spectrochim Acta Mol Biomol Spectrosc 152:485–490

    Article  CAS  Google Scholar 

  46. Padma Suvarna R, Raghavendra Rao K, Subbarangaiah (2002) A simple technique for a.c. conductivity measurements. Bull Mater Sci 25(7):647–651.

  47. You Kok Yeow, Zulkifly Abbas, Kaida Khalid, Mohamad Zaki Abdul Rahman (2010) Improved dielectric model for polyvinyl alcohol-water hydrogel at microwave frequencies. Am J Appl Sci 7(2):270–276

  48. Latif I, Entisar E. AL-Abodi, Dhefaf H. Badri, Jawad Al Khafagi (2012) Preparation, characterization and electrical study of (Carboxymethylated Polyvinyl Alcohol/ZnO) nanocomposites. Am J Polym Sci 2(6):135–140.

  49. El-Ahdal MA (2002) Radiation effect on the molecular structure of dyed poly(vinyl alcohol). Int J Polym Mater 86(5):1219–1226

    Google Scholar 

  50. Rithin Kumar NB, Vincent Crasta, Praveen BM (2014) Advancement in microstructural, optical and mechanical properties of PVA (Mowiol 10–98) doped by ZnO Nanoparticles. Phys Res Int, 1–9.

  51. Tauc J, Menth A, Wood D (1970) Optical and magnetic investigations of the localized states in semiconducting glasses. Phys Rev Lett 25:749–752

    Article  CAS  Google Scholar 

  52. Aziz SB, Ahmed HM, Hussein AM, Fathulla AB, Wsw RM, Hussein RT (2015) Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites. J Mater Sci Mater Electron 26:8022–8028.

  53. Viezbicke BD, Patel S, Davis BE, Birnie DP (2015) Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys Status Solidi B 252:1700–1710

    Article  CAS  Google Scholar 

  54. Abdullah OG (2016) Synthesis of single-phase zinc chromite nano-spinel embedded in polyvinyl alcohol films and its effects on energy band gap. J Mater Sci Mater Electron 27:12106–12111.

    Article  Google Scholar 

  55. Elizabeth Jeessa James, Shweta Mishra, Joice Jose, Arunendra Kumar Patel, Kallol Das (2016) Preparation & optical studies on zinc oxide: poly vinyl alcohol (PVA) Composite. IJSRD 4:1042–1044

  56. Abdul Razek EM, Abdugany AM, Oraby AH, Asnag GM (2012) Investigation of mixed filler effect on optical and structural properties of PEMA films. J Eng Technol IJET IJENS 12:98–102.

    Google Scholar 

  57. Dutta S, Ganguly BN (2012) Characterization of ZnO nanoparticles grown in presence of Folic acid template. J Nanobiotechnol 29(2012):10–29

    Google Scholar 

Download references

Acknowledgements

The authors thank The management of Madurai Kamaraj University, Madurai, for the encouragement to carry out this fundamental research at DDE. We express our gratitude to the experts at various Hi-end Institutes for characterizing the samples. The authors sincerely thank the reviewers for the positive critical evaluation and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kalyani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthupandeeswari, A., Kalyani, P. & Nehru, L.C. On the effects of high loading of ZnO nanofiller on the structural, optical, impedance and dielectric features of PVA@ZnO nanocomposite films. Polym. Bull. 78, 7071–7088 (2021). https://doi.org/10.1007/s00289-020-03443-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03443-6

Keywords

Navigation