Skip to main content
Log in

Bernoulli Galerkin Matrix Method and Its Convergence Analysis for Solving System of Volterra–Fredholm Integro-Differential Equations

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

The principle aim of this paper is to find the numerical solution for system of Volterra–Fredholm integro-differential equations by using the Bernoulli polynomials and the Galerkin method. Through this scheme, the main problem will be transformed to a system of algebraic equations which its solutions are depend on the unknown Bernoulli coefficients. This method gives an analytic solution for systems with polynomial function solution. Better accuracy will be obtained by increasing the number of Bernoulli polynomials. Also, a mathematical proof for its convergence is provided. Moreover, some examples are presented and their numerical results are compared to the results of the Bessel collocation method to show the validity and applicability of this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akyüz A, Sezer M (2003) Chebyshev polynomial solutions of systems of high-order linear differential equations with variable coefficients. Appl Math Comput 144(2–3):237–247

    MathSciNet  MATH  Google Scholar 

  • Akyüz-Daşcıoğlu A, Sezer M (2005) Chebyshev polynomial solutions of systems of higher-order linear Fredholm–Volterra integro-differential equations. J Frankl Inst 342(6):688–701

    Article  MathSciNet  MATH  Google Scholar 

  • Assari P (2017) The numerical solution of nonlinear integral equations of the second kind using thin plate spline discrete collocation method. Ric Mat 66(2):469–489

    Article  MathSciNet  MATH  Google Scholar 

  • Babaaghaie A, Maleknejad K (2017) Numerical solutions of nonlinear two-dimensional partial volterra integro-differential equations by haar wavelet. J Comput Appl Math 317:643–651

    Article  MathSciNet  MATH  Google Scholar 

  • Bülbül B, Sezer M (2011) Taylor polynomial solution of hyperbolic type partial differential equations with constant coefficients. Int J Comput Math 88(3):533–544

    Article  MathSciNet  MATH  Google Scholar 

  • Chen J, Huang Y, Rong H, Wu T, Zeng T (2015) A multiscale Galerkin method for second-order boundary value problems of fredholm integro-differential equation. J Comput Appl Math 290:633–640

    Article  MathSciNet  MATH  Google Scholar 

  • Gülsu M, Gürbüz B, Öztürk Y, Sezer M (2011) Laguerre polynomial approach for solving linear delay difference equations. Appl Math Comput 217(15):6765–6776

    MathSciNet  MATH  Google Scholar 

  • Hesameddini E, Asadolhifard E (2013) Solving systems of linear volterra integro-differential equations by using sinc-collocation method. Int J Math Eng Sci 2(7):1–9

    Google Scholar 

  • Hesameddini E, Rahimi A (2013) A new numerical scheme for solving systems of integro-differential equations. Comput Methods Differ Equ 1(2):108–119

    MATH  Google Scholar 

  • Işik OR, Sezer M, Güney Z (2011) Bernstein series solution of a class of linear integro-differential equations with weakly singular kernel. Appl Math Comput 217(16):7009–7020

    MathSciNet  MATH  Google Scholar 

  • Jordán K (1965) Calculus of finite differences, vol 33. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Kheybari S, Darvishi M, Wazwaz AM (2017) A semi-analytical algorithm to solve systems of integro-differential equations under mixed boundary conditions. J Comput Appl Math 317:72–89

    Article  MathSciNet  MATH  Google Scholar 

  • Laeli Dastjerdi H, Maalek Ghaini FM (2016) The discrete collocation method for Fredholm–Hammerstein integral equations based on moving least squares method. Int J Comput Math 93(8):1347–1357

    Article  MathSciNet  MATH  Google Scholar 

  • Maleknejad K, Kajani MT (2004) Solving linear integro-differential equation system by Galerkin methods with hybrid functions. Appl Math Comput 159(3):603–612

    MathSciNet  MATH  Google Scholar 

  • Maleknejad K, Basirat B, Hashemizadeh E (2012) A bernstein operational matrix approach for solving a system of high order linear Volterra–Fredholm integro-differential equations. Math Comput Model 55(3–4):1363–1372

    Article  MathSciNet  MATH  Google Scholar 

  • Mokhtary P (2016) Discrete Galerkin method for fractional integro-differential equations. Acta Math Sci 36(2):560–578

    Article  MathSciNet  MATH  Google Scholar 

  • Pourabd M et al (2015) Moving least square for systems of integral equations. Appl Math Comput 270:879–889

    MathSciNet  MATH  Google Scholar 

  • Pourgholi R, Tahmasebi A, Azimi R (2017) Tau approximate solution of weakly singular Volterra integral equations with Legendre wavelet basis. Int J Comput Math 94(7):1337–1348

    Article  MathSciNet  MATH  Google Scholar 

  • Sahu PK, Ray SS (2015a) Legendre wavelets operational method for the numerical solutions of nonlinear Volterra integro-differential equations system. Appl Math Comput 256:715–723

    MathSciNet  MATH  Google Scholar 

  • Sahu PK, Ray SS (2015b) Numerical solutions for volterra integro-differential forms of Lane-Emden equations of first and second kind using Legendre multi-wavelets. Electron J Diffe Equ 2015(28):1–11

    MathSciNet  MATH  Google Scholar 

  • Sekar RCG, Murugesan K (2016) System of linear second order Volterra integro-differential equations using single term Walsh series technique. Appl Mat Computat 273:484–492

    Article  MathSciNet  MATH  Google Scholar 

  • Sorkun HH, Yalçinbaş S (2010) Approximate solutions of linear Volterra integral equation systems with variable coefficients. Appl Math Model 34(11):3451–3464

    Article  MathSciNet  MATH  Google Scholar 

  • Toutounian F, Tohidi E, Shateyi S (2013) A collocation method based on the bernoulli operational matrix for solving high-order linear complex differential equations in a rectangular domain. In: Abstract and Applied Analysis, vol 2013. Hindawi

  • Yalçinbaş S, Sezer M, Sorkun HH (2009) Legendre polynomial solutions of high-order linear fredholm integro-differential equations. Appl Math Comput 210(2):334–349

    MathSciNet  MATH  Google Scholar 

  • Yunxia W, Yanping C (2017) Legendre spectral collocation method for Volterra–Hammerstein integral equation of the second kind. Acta Math Sci 37(4):1105–1114

    Article  MathSciNet  MATH  Google Scholar 

  • Yusufoğlu E (2009) Numerical solving initial value problem for Fredholm type linear integro-differential equation system. J Frankl Inst 346(6):636–649

    Article  MathSciNet  MATH  Google Scholar 

  • Yüzbaşı Ş (2015) Numerical solutions of system of linear Fredholm–Volterra integro-differential equations by the Bessel collocation method and error estimation. Appl Math Comput 250:320–338

    MathSciNet  MATH  Google Scholar 

  • Yüzbaşı Ş, Sezer M, Kemancı B (2013) Numerical solutions of integro-differential equations and application of a population model with an improved Legendre method. Appl Math Model 37(4):2086–2101

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmail Hesameddini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hesameddini, E., Riahi, M. Bernoulli Galerkin Matrix Method and Its Convergence Analysis for Solving System of Volterra–Fredholm Integro-Differential Equations. Iran J Sci Technol Trans Sci 43, 1203–1214 (2019). https://doi.org/10.1007/s40995-018-0584-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-018-0584-y

Keywords

Mathematics Subject Classification

Navigation