Skip to main content
Log in

Spectral Tau Algorithm for Certain Coupled System of Fractional Differential Equations via Generalized Fibonacci Polynomial Sequence

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

This paper concerns new numerical solutions for certain coupled system of fractional differential equations through the employment of the so-called generalized Fibonacci polynomials. These polynomials include two parameters and they generalize some important well-known polynomials such as Fibonacci, Pell, Fermat, second kind Chebyshev, and second kind Dickson polynomials. The proposed numerical algorithm is essentially built on applying the spectral tau method together with utilizing a Fejer quadrature formula. For the implementation of our algorithm, we introduce a new operational matrix of fractional-order differentiation of generalized Fibonacci polynomials. A careful investigation of convergence and error analysis of the proposed generalized Fibonacci expansion is performed. The robustness of the proposed algorithm is tested through presenting some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd-Elhameed WM (2014) On solving linear and nonlinear sixth-order two point boundary value problems via an elegant harmonic numbers operational matrix of derivatives. Comput Model Eng Sci 101(3):159–185

    MathSciNet  MATH  Google Scholar 

  • Abd-Elhameed WM (2016) An elegant operational matrix based on harmonic numbers: effective solutions for linear and nonlinear fourth-order two point boundary value problems. Nonlinear Anal-Model 21(4):448–464

    Article  MathSciNet  MATH  Google Scholar 

  • Abd-Elhameed WM, Youssri YH (2015) New spectral solutions of multi-term fractional order initial value problems with error analysis. Comp Model Eng Sci 105:375–398

    Google Scholar 

  • Abd-Elhammed WM, Youssri YH (2015) Spectral solutions for fractional differential equations via a novel Lucas operational matrix of fractional derivatives. Rom J Phys 61(5–6):795–813

    Google Scholar 

  • Abd-Elhammed WM, Youssri YH (2016) A novel operational matrix of Caputo fractional derivatives of Fibonacci polynomials: spectral solutions of fractional differential equations. Entropy 18(10):345

    Article  MathSciNet  Google Scholar 

  • Abd-Elhammed WM, Youssri YH (2017) Generalized Lucas polynomial sequence approach for fractional differential equations. Nonlinear Dyn 89(2):1341–1355

    Article  MathSciNet  MATH  Google Scholar 

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol 55. Courier Corporation, North Chelmsford

    MATH  Google Scholar 

  • Aslan E, Sezer M (2016) A numerical approach with error estimation to solve general integro-differential-difference equations using Dickson polynomials. Appl Math Comput 276:324–339

    MathSciNet  MATH  Google Scholar 

  • Beilinson A, Levin A (1991) The elliptic polylogarithm. In: Jannsen U, Kleiman S, Serre JP (eds) Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math, vol 55, pp 123–190

  • Bhrawy AH, Zaky MA (2015) Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn 80(1–2):101–116

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Abdelkawy MA, Alzahrani AA, Baleanu D, Alzahrani EO (2015) A Chebyshev-Laguerre-Gauss-Radau collocation scheme for solving a time fractional sub-diffusion equation on a semi-infinite domain. Proc Rom Acad A 16:490–498

    MathSciNet  Google Scholar 

  • Bhrawy AH, Taha TM, Machado JAT (2015) A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn 81(3):1023–1052

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd JP (2001) Chebyshev and fourier spectral methods. Courier Corporation, Dover

    MATH  Google Scholar 

  • Canuto C, Hussaini MY, Quarteroni A, Zang TA (1988) Spectral methods in fluid dynamics. Springer, New York

    Book  MATH  Google Scholar 

  • Çenesiz Y, Keskin Y, Kurnaz A (2010) The solution of the Bagley–Torvik equation with the generalized Taylor collocation method. J Franklin Inst 347(2):452–466

    Article  MathSciNet  MATH  Google Scholar 

  • Daftardar-Gejji V, Jafari H (2007) Solving a multi-order fractional differential equation using Adomian decomposition. Appl. Math. Comput. 189(1):541–548

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Abbaszadeh M (2017) Spectral element technique for nonlinear fractional evolution equation, stability and convergence analysis. Appl Numer Math 119:51–66

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Abbaszadeh M, Mohebbi A (2016) Legendre spectral element method for solving time fractional modified anomalous sub-diffusion equation. Appl Math Model 40(5):3635–3654

    Article  MathSciNet  Google Scholar 

  • Doha EH, Abd-Elhameed WM (2014) On the coefficients of integrated expansions and integrals of Chebyshev polynomials of third and fourth kinds. Bull Malays Math Sci Soc 37(2):383–398

    MathSciNet  MATH  Google Scholar 

  • Doha EH, Abd-Elhameed WM, Bassuony MA (2015) On using third and fourth kinds chebyshev operational matrices for solving Lane–Emden type equations. Rom J Phys 60:281–292

    Google Scholar 

  • Fejér L (1933) Mechanische quadraturen mit positiven cotesschen zahlen. Mathematische Zeitschrift 37(1):287–309

    Article  MathSciNet  MATH  Google Scholar 

  • Gulec HH, Taskara N, Uslu K (2013) A new approach to generalized Fibonacci and Lucas numbers with binomial coefficients. Appl Math Comput 220:482–486

    MathSciNet  MATH  Google Scholar 

  • Hesthaven J, Gottlieb S, Gottlieb D (2007) Spectral methods for time-dependent problems, vol 21. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Khalil H, Khan RA (2015) The use of Jacobi polynomials in the numerical solution of coupled system of fractional differential equations. Int J Comput Math 92(7):1452–1472

    Article  MathSciNet  MATH  Google Scholar 

  • Koepf W (2014) Hypergeometric summation. 2nd edn. Springer Universitext Series. http://www.hypergeometric-summation.org

  • Kopriva DA (2009) Implementing spectral methods for partial differential equations: algorithms for scientists and engineers. Springer Science & Business Media, New York

    Book  MATH  Google Scholar 

  • Koshy T (2011) Fibonacci and Lucas numbers with applications. Wiley, New York

    MATH  Google Scholar 

  • Luke YL (1972) Inequalities for generalized hypergeometric functions. J Approx Theory 5(1):41–65

    Article  MathSciNet  MATH  Google Scholar 

  • Meerschaert M, Tadjeran C (2006) Finite difference approximations for two-sided space-fractional partial differential equations. Appl Numer Math 56(1):80–90

    Article  MathSciNet  MATH  Google Scholar 

  • Momani S, Odibat Z (2007) Numerical approach to differential equations of fractional order. J Comput Appl Math 207(1):96–110

    Article  MathSciNet  MATH  Google Scholar 

  • Oldham KB (1974) The fractional calculus. Wiley, Amsterdam

    MATH  Google Scholar 

  • Owolabi KM (2016) Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems. Chaos, Solitons Fractals 93:89–98

    Article  MathSciNet  MATH  Google Scholar 

  • Owolabi KM (2017) Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order. Commun Nonlinear Sci Numer Simul 44:304–317

    Article  MathSciNet  Google Scholar 

  • Owolabi KM, Atangana A (2016) Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative. EPJ Plus 131(9):335

    Google Scholar 

  • Pindza E, Owolabi KM (2016) Fourier spectral method for higher order space fractional reaction-diffusion equations. Commun Nonlinear Sci Numer Simul 40:112–128

    Article  MathSciNet  Google Scholar 

  • Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic Press, New York

    MATH  Google Scholar 

  • Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives. Theory Appl Gordon Breach, Yverdon

  • Taskara N, Uslu K, Gulec HH (2010) On the properties of Lucas numbers with binomial coefficients. Appl Math Lett 23(1):68–72

    Article  MathSciNet  MATH  Google Scholar 

  • Trefethen LN (2000) Spectral methods in MATLAB, vol 10. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Wang W, Wang H (2015) Some results on convolved (p, q)-Fibonacci polynomials. Integra Transforms Spec Funct 26(5):340–356

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao-Jun Yang D, Baleanu D, Khan Y, Mohyud-Din ST (2014) Local fractional variational iteration method for diffusion and wave equations on cantor sets. Rom J Phys 59(1–2):36–48

    MathSciNet  Google Scholar 

  • Youssri YH (2017) A new operational matrix of Caputo fractional derivatives of Fermat polynomials: an application for solving the Bagley–Torvik equation. Adv Differ Equ 2017(1):73

    Article  MathSciNet  MATH  Google Scholar 

  • Youssri YH, Abd-Elhameed WM, Doha EH (2015) Ultraspherical wavelets method for solving Lane–Emden type equations. Rom J Phys, 1298–1314

Download references

Acknowledgements

The authors would like to thank the referees for their constructive comments; which helped substantially to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Youssri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Elhameed, W.M., Youssri, Y.H. Spectral Tau Algorithm for Certain Coupled System of Fractional Differential Equations via Generalized Fibonacci Polynomial Sequence. Iran J Sci Technol Trans Sci 43, 543–554 (2019). https://doi.org/10.1007/s40995-017-0420-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0420-9

Keywords

Navigation