Skip to main content
Log in

Generalized Lucas polynomial sequence approach for fractional differential equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article is interested in presenting and implementing two new numerical algorithms for solving multi-term fractional differential equations. The idea behind the proposed algorithms is based on establishing a novel operational matrix of fractional-order differentiation of generalized Lucas polynomials in the Caputo sense. This operational matrix serves as a powerful tool for obtaining the desired numerical solutions. The resulting solutions are spectral, and they are built on utilizing tau and collocation methods. A new treatment of convergence and error analysis of the suggested generalized Lucas expansion is presented. The presented numerical results demonstrate the efficiency, applicability and high accuracy of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  2. Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  3. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Courier Corporation, North Chelmsford (2001)

    MATH  Google Scholar 

  4. Trefethen, L.N.: Spectral Methods in MATLAB, vol. 10. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  5. Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  6. Doha, E.H., Abd-Elhameed, W.M., Bassuony, M.A.: On using third and fourth kinds Chebyshev operational matrices for solving Lane–Emden type equations. Rom. J. Phys. 60, 281–292 (2015)

    Google Scholar 

  7. Bhrawy, A.H., Abdelkawy, M.A., Alzahrani, A.A., Baleanu, D., Alzahrani, E.O.: A Chebyshev-Laguerre-Gauss- Radau collocation scheme for solving a time fractional sub-diffusion equation on a semi-infinite domain. Proc. Rom. Acad. A 16, 490–498 (2015)

    MathSciNet  Google Scholar 

  8. Doha, E.H., Abd-Elhameed, W.M.: On the coefficients of integrated expansions and integrals of Chebyshev polynomials of third and fourth kinds. Bull. Malays. Math. Sci. Soc.(2) 37(2), 383–398 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Abd-Elhameed, W.M., Doha, E.H., Youssri, Y.H.: Efficient spectral-Petrov-Galerkin methods for third- and fifth-order differential equations using general parameters generalized Jacobi polynomials. Quaest. Math. 36, 15–38 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Çenesiz, Y., Keskin, Y., Kurnaz, A.: The solution of the Bagley–Torvik equation with the generalized Taylor collocation method. J. Frankl. Inst. 347(2), 452–466 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Daftardar-Gejji, V., Jafari, H.: Solving a multi-order fractional differential equation using Adomian decomposition. Appl. Math. Comput. 189(1), 541–548 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Momani, S., Odibat, Z.: Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 207(1), 96–110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meerschaert, M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Das, S.: Analytical solution of a fractional diffusion equation by variational iteration method. Comput. Math. Appl. 57(3), 483–487 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Das, D., Ray, P.C., Bera, R.K., Sarkar, P.: Solution of nonlinear fractional differential equation (NFDE) by homotopy analysis method. Int. J. Sci. Res. Edu. 3(3), 3084–3103 (2015)

    Google Scholar 

  16. Ghazanfari, B., Sepahvandzadeh, A.: Homotopy perturbation method for solving fractional Bratu-type equation. J. Math. Model. 2(2), 143–155 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Yang, Xiao-Jun, Baleanu, D., Khan, Y., Mohyud-Din, S.T.: Local fractional variational iteration method for diffusion and wave equations on Cantor sets. Rom. J. Phys. 59(1–2), 36–48 (2014)

    MathSciNet  Google Scholar 

  18. Abd-Elhameed, W.M., Youssri, Y.H.: New spectral solutions of multi-term fractional order initial value problems with error analysis. CMES Comp. Model. Eng. 105, 375–398 (2015)

    Google Scholar 

  19. Abd-Elhameed, W.M., Youssri, Y.H.: New ultraspherical wavelets spectral solutions for fractional Riccati differential equations. Abs. Appl. Anal. (2014). doi:10.1155/2014/626275

  20. Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80(1–2), 101–116 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bhrawy, A.H., Taha, T.M., Machado, J.A.T.: A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn. 81(3), 1023–1052 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, X.J., Machado, J.A.T., Srivastava, H.M.: A new numerical technique for solving the local fractional diffusion equation: two-dimensional extended differential transform approach. Appl. Math. Comput. 274, 143–151 (2016)

    MathSciNet  Google Scholar 

  23. Moghaddam, B.P., Machado, J.A.T.: A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations. Comput. Math. Appl. (2017). doi:10.1016/j.camwa.2016.07.010

    MathSciNet  Google Scholar 

  24. Moghaddam, B.P., Yaghoobi, Sh, Machado, J.A.T.: An extended predictor–corrector algorithm for variable-order fractional delay differential equations. J. Comput. Nonlinear Dyn. 11(6), 061001 (2016). doi:10.1115/1.4032574

    Article  Google Scholar 

  25. Wang, W., Wang, H.: Some results on convolved \((p, q)\)-Fibonacci polynomials. Integral Transforms Spec. Funct. 26(5), 340–356 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gulec, H.H., Taskara, N., Uslu, K.: A new approach to generalized Fibonacci and Lucas numbers with binomial coefficients. Appl. Math. Comput. 220, 482–486 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Taskara, N., Uslu, K., Gulec, H.H.: On the properties of Lucas numbers with binomial coefficients. Appl. Math. Lett. 23(1), 68–72 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Koshy, T.: Fibonacci and Lucas numbers with applications. Wiley, New York (2011)

    MATH  Google Scholar 

  29. Koç, A.B., Çakmak, M., Kurnaz, A., Uslu, K.: A new Fibonacci type collocation procedure for boundary value problems. Adv. Differ. Equ. 2013(1), 1–11 (2013)

    Article  MathSciNet  Google Scholar 

  30. Mirzaee, F., Hoseini, S.: Application of Fibonacci collocation method for solving Volterra–Fredholm integral equations. Appl. Math. Comp. 273, 637–644 (2016)

    Article  MathSciNet  Google Scholar 

  31. Kürkçü, Ö.K., Aslan, E., Sezer, M.: A numerical approach with error estimation to solve general integro-differential–difference equations using Dickson polynomials. Appl. Math. Comput. 276, 324–339 (2016)

    MathSciNet  Google Scholar 

  32. Abd-Elhameed, W.M.: On solving linear and nonlinear sixth-order two point boundary value problems via an elegant harmonic numbers operational matrix of derivatives. CMES Comput. Model. Eng. Sci. 101(3), 159–185 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Abd-Elhameed, W.M.: An elegant operational matrix based on harmonic numbers: effective solutions for linear and nonlinear fourth-order two point boundary value problems. Nonlinear Anal-Model. 21(4), 448–464 (2016)

    MathSciNet  Google Scholar 

  34. Napoli, A., Abd-Elhameed, W.M.: An innovative harmonic numbers operational matrix method for solving initial value problems. Calcolo 54, 57–76 (2017)

    Article  MathSciNet  Google Scholar 

  35. Youssri, Y.H., Abd-Elhameed, W.M., Doha, E.H.: Ultraspherical wavelets method for solving Lane–Emden type equations. Rom. J. Phys. 60(9–10), 1298–1314 (2015)

    Google Scholar 

  36. Bhrawy, A.H., Doha, E.H., Machado, J.A.T., Ezz-Eldien, S.S.: An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index. Asian J. Control 17, 2389–2402 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bhrawy, A.H., Ezz-Eldien, S.S.: A new Legendre operational technique for delay fractional optimal control problems. Calcolo 53, 521–543 (2016)

    Article  MathSciNet  Google Scholar 

  38. Ezz-Eldien, S.S.: New quadrature approach based on operational matrix for solving a class of fractional variational problems. J. Comput. Phys 317, 362–381 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zaky, M.A., Ezz-Eldien, S.S., Doha, E.H., Machado, J.A.T., Bhrawy, A.H.: New quadrature approach based on operational matrix for solving a class of fractional variational problems. J. Comput. Nonlinear Dyn. 11(6), 061002 (2016)

    Article  Google Scholar 

  40. Li, C., Qian, D., Chen, Y.Q.: On Riemann-Liouville and Caputo derivatives. Discret. Dyn. Nat. Soc. 2011, 1–15 (2011). doi:10.1155/2011/562494

    MathSciNet  MATH  Google Scholar 

  41. Li, C.P., Zhao, Z.G.: Introduction to fractional integrability and differentiability. Eur. Phys. J. Spec. Top. 193(1), 5–26 (2011)

    Article  Google Scholar 

  42. Li, C., Dao, X., Guo, P.: Fractional derivatives in complex planes. Nonlinear Anal. 71(5), 1857–1869 (2009)

  43. Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)

  44. Ishteva, M.: Properties and applications of the Caputo fractional operator. PhD thesis, Msc. thesis, Department of Mathematics, Universität Karlsruhe (TH), Sofia, Bulgaria, (2005)

  45. Oldham, K.B.: The Fractional Calculus. Elsevier, Amsterdam (1974)

    MATH  Google Scholar 

  46. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, New York (1998)

    MATH  Google Scholar 

  47. Koepf, W.: Hypergeometric summation. Second Edition, Springer Universitext Series, 2014, http://www.hypergeometric-summation.org. (2014)

  48. Doha, E.H., Abd-Elhameed, W.M., Youssri, Y.H.: Second kind Chebyshev operational matrix algorithm for solving differential equations of Lane–Emden type. New Astron. 23, 113–117 (2013)

  49. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol. 55. Courier Corporation, North Chelmsford (1964)

    MATH  Google Scholar 

  50. Luke, Y.L.: Inequalities for generalized hypergeometric functions. J. Approx. Theory 5(1), 41–65 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  51. Rainville, E.D.: Special Functions. Macmillan, New York (1960)

    MATH  Google Scholar 

  52. Dutka, Jacques: The early history of the factorial function. Arch. Hist. Exact Sci. 43(3), 225–249 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  53. Shiralashetti, S.C., Deshi, A.B.: An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations. Nonlinear Dyn. 83(1–2), 293–303 (2016)

    Article  MathSciNet  Google Scholar 

  54. Keshavarz, E., Ordokhani, Y., Razzaghi, M.: Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Model. 38(24), 6038–6051 (2014)

    Article  MathSciNet  Google Scholar 

  55. Blaszczyk, T., Ciesielski, M.: Fractional oscillator equation: analytical solution and algorithm for its approximate computation. J. Vib. Control. 22(8), 2045–2052 (2016)

    Article  MathSciNet  Google Scholar 

  56. Abd-Elhameed, W.M., Youssri, Y.H.: Spectral solutions for fractional differential equations via a novel Lucas operational matrix of fractional derivatives. Rom. J. Phys. 61(5–6), 795–813 (2016)

    Google Scholar 

  57. Chen, Y., Ke, X., Wei, Y.: Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis. Appl. Math. Comput. 251, 475–488 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Bhrawy, A.H., Zaky, M.A.: Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations. Appl. Math. Model. 40(2), 832–845 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  59. Irandoust-Pakchin, S., Lakestani, M., Kheiri, H.: Numerical approach for solving a class of nonlinear fractional differential equation. B. Iran. Math. Soc. 42(5), 1107–1126 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the three anonymous referees for critically reading the manuscript and also for their constructive comments, which helped substantially to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Abd-Elhameed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Elhameed, W.M., Youssri, Y.H. Generalized Lucas polynomial sequence approach for fractional differential equations. Nonlinear Dyn 89, 1341–1355 (2017). https://doi.org/10.1007/s11071-017-3519-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3519-9

Keywords

Navigation