Skip to main content
Log in

DTPA-Functionalized Nano-Porous MCM-41 Silica: A New Potential Nanoengineered Labeled Composite for Diagnostic Applications

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

Mesoporous silica, MCM-41, functionalized with diethylene triamine pentaacetic acid (DTPA) and 3-aminopropyltrimethoxysilane as an interface ligand, was investigated as a potential drug delivery system for radionuclides. The outstanding properties of Gallium-67 complexes, such as noninvasively detection of tumors, inflammation, and both acute and chronic infection, proposed that these compounds might potentially be good candidates as test drugs for drug delivery systems. In this work, [67Ga] radionuclide was grafted on DTPA-functionalized MCM-41 with the direct method of modification, and the compounds were characterized by paper chromatography, FT-IR spectroscopy, low angle X-ray diffraction, and CHN and TGA/DTA analyses. The specific activity of the final compound was found to be 3 Ci/g, and the biological evaluations of the grafted complex, [67Ga]-DTPA-NH-Propyl@MCM-41, were done in fibrosarcoma tumor-bearing Sprague–Dawley rats. DTPA-functionalized MCM-41 was found to be a good host for diagnostic radionuclides with the ability to form complex with DTPA. Considering the accumulation of the tracer in tumor, fast wash-out from normal tissues, appropriate half-life 67Ga and less imposed radiation doses to patients (compare to non-targeted radiopharmaceutical), [67Ga]-DTPA-NH-Propyl@MCM-41 can be a suitable radiopharmaceutical for imaging purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD et al (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 27:10834–10843

    Article  Google Scholar 

  • Camargo PR, Mazzieri R, Snitcowsky R, de Lourdes Higuchi M, Cláudio Meneghetti J, Soares J et al (1990) Correlation between Gallium-67 imaging and endomyocardial biopsy in children with severe dilated cardiomyopathy. Int J Cardiol 28(3):293–297

    Article  Google Scholar 

  • Chua R, Rees D (2004) Mycotic coronary artery aneurysm detected by Gallium67 scintigraphy. Heart Lung Circ 13(1):101–105

    Article  Google Scholar 

  • Di Pasqua AJ, Sharma KK, Shi Y-L, Toms BB, Ouellette W, Dabrowiak JC et al (2008) Cytotoxicity of mesoporous silica nanomaterials. J Inorg Biochem 102(7):1416–1423

    Article  Google Scholar 

  • Fazaeli Y, Amini MM, Mohajerani E, Sharbatdaran M, Torabi N (2010) Grafting aluminum(III) 8-hydroxyquinoline derivatives on MCM-41 mesoporous silica for tuning of the light emitting color. J Colloid Interface Sci 346(2):384–390

    Article  Google Scholar 

  • Fazaeli Y, Amini MM, Ashourion H, Heydari H, Majdabadi A, Jalilian AR et al (2011) Grafting of a novel gold(III) complex on nanoporous MCM-41 and evaluation of its toxicity in Saccharomyces cerevisiae. Int J Nanomed 6:3251–3257

    Google Scholar 

  • Fazaeli Y, Feizi S, Jalilian A, Hejrani A (2016) Grafting of [64Cu]-TPPF20 porphyrin complex on functionalized nano-porous MCM-41 silica as a potential cancer imaging agent. Appl Radiat Isot 112(1):13–19

    Article  Google Scholar 

  • Guo S, Li D, Zhang L, Li J, Wang E (2009) Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials 30(10):1881–1889

    Article  Google Scholar 

  • Hudson SP, Padera RF, Langer R, Kohane DS (2008) The biocompatibility of mesoporous silicates. Biomaterials 29(30):4045–4055

    Article  Google Scholar 

  • Jalilian AR, Yousefnia H, Shafaii K, Novinrouz A, Rajamand AA (2012) Preparation and biodistribution studies of a radiogallium-acetylacetonate bis (thiosemicarbazone) complex in tumor-bearing rodents. Iran J Pharm Res IJPR 11(2):523–531

    Google Scholar 

  • Kapoor S, Hegde R, Bhattacharyya AJ (2009) Influence of surface chemistry of mesoporous alumina with wide pore distribution on controlled drug release. J Controll Releas 140(1):34–39

    Article  Google Scholar 

  • Kohane DS, Tse JY, Yeo Y, Padera R, Shubina M, Langer R (2006) Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J Biomed Mater Res, Part A 77A(2):351–361

    Article  Google Scholar 

  • Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3(8):1341–1346

    Article  Google Scholar 

  • Manzano M, Aina V, Areán CO, Balas F, Cauda V, Colilla M et al (2008) Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem Eng J 137(1):30–37

    Article  Google Scholar 

  • McWilliams ET, Yavari A, Raman V (2011) Aortic root abscess: Multimodality imaging with computed tomography and Gallium-67 citrate single-photon emission computed tomography/computed tomography hybrid imaging. J Cardiovasc Comput Tomogr 5(2):122–124

    Article  Google Scholar 

  • Muñoz B, Rámila A, Pérez-Pariente J, Díaz I, Vallet-Regí M (2003) MCM-41 organic modification as drug delivery rate regulator. Chem Mater 15(2):500–503

    Article  Google Scholar 

  • Murugesan S, Shetty SJ, Srivastava TS, Samuel AM, Noronha OPD (2002) Preparation and biological evaluation of the new chlorin photosensitizer T3,4BCPC for detection and treatment of tumors. J Photochem Photobiol B: Biol 68(1):33–38

    Article  Google Scholar 

  • Nomura S, Watanabe Y, Otsuka N, Osawa G (1996) Gallium 67 scintigraphy as a predictor of renal prognosis in primary immunoglobulin A nephropathy. Am J Kidney Dis 27(2):204–208

    Article  Google Scholar 

  • Parry R, Akhtar N, Hartnell GG (1993) Case report: unsuspected pericarditis diagnosed with Gallium67 scan. Clin Radiol 48(5):332–333

    Article  Google Scholar 

  • Rámila A, Muñoz B, Pérez-Pariente J, Vallet-Regí M (2003) Mesoporous MCM-41 as drug host system. J Sol-Gel Sci Technol 26(1–3):1199–1202

    Article  Google Scholar 

  • Schuster DM, Alazraki N (2002) Gallium and other agents in diseases of the lung. Semin Nucl Med 32(3):193–211

    Article  Google Scholar 

  • Siwowska K, Müller C (2015) Preclinical development of small-molecular-weight folate-based radioconjugates: a pharmacological perspective. Quart J Nucl Med Mol Imaging: Off Public Italian Assoc Nucl Med (AIMN)[and] Int Assoc Radiopharmacol (IAR), [and] Sect Soc 59(3):269–286

  • Slowing I, Trewyn BG, Lin VSY (2006) Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 128(46):14792–14793

    Article  Google Scholar 

  • Subbarayan M, Shetty SJ, Srivastava TS, Noronha OPD, Samuel AM (2001) Evaluation studies of technetium-99 m-porphyrin (T3,4BCPP) for tumor imaging. J Porphyr Phthalocyanines 5(12):824–828

    Article  Google Scholar 

  • Szegedi A, Popova M, Goshev I, Mihály J (2011) Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release. J Solid State Chem 184(5):1201–1207

    Article  Google Scholar 

  • Tang Q, Xu Y, Wu D, Sun Y (2006) A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine. J Solid State Chem 179(5):1513–1520

    Article  Google Scholar 

  • Tomazic-Jezic VJ, Merritt K, Umbreit TH (2001) Significance of the type and the size of biomaterial particles on phagocytosis and tissue distribution. J Biomed Mater Res 55(4):523–529

    Article  Google Scholar 

  • Vallet-Regí M (2006) Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem-A Eur J 12(23):5934–5943

    Article  Google Scholar 

  • Weiner RE (1996) The mechanism of 67 Ga localization in malignant disease. Nucl Med Biol 23(6):745–751

    Article  Google Scholar 

  • Yamada S, Nakanishi H, Hirayama M, Katsuno M, Sobue G (2015) (67) Ga scintigraphy as a therapeutic marker for spinal cord and muscular sarcoidosis: A case report. Rinsho shinkeigaku = Clin Neurol 55:665–668

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mrs. Bolori and Mrs. Moradkhani for conducting animal studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Fazaeli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazaeli, Y., Asgari, Z. DTPA-Functionalized Nano-Porous MCM-41 Silica: A New Potential Nanoengineered Labeled Composite for Diagnostic Applications. Iran J Sci Technol Trans Sci 42, 497–504 (2018). https://doi.org/10.1007/s40995-016-0047-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-016-0047-2

Keywords

Navigation