Skip to main content
Log in

Effects of Growth Duration and Precursor Concentration on the Growth of ZnO Nanorods Synthesized by Chemical Bath Deposition

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

Well-aligned ZnO nanorods were successfully fabricated on polyethylene naphthalate (PEN) substrates by a simple chemical bath deposition technique at a low temperature. The effects of growth duration (2–8 h) with precursor concentrations of 0.025 and 0.050 M on the optical and structural properties of the prepared ZnO nanorods were systematically studied by the X-ray diffraction (XRD), field emission scanning electron microscopy, transmission electron microscopy, photoluminescence (PL), and UV–visible. The XRD results demonstrated that the ZnO nanorods vertically grew in the (002) direction along the z axis on the substrate. These low compressive strain values revealed that the obtained ZnO nanorods grown on seed-layer ZnO/PEN substrates had a high quality crystal structure. The field emission scanning electron microscopy images showed that the vertical ZnO nanorods were hexagonal shaped, and that the average diameter of the ZnO nanorod arrays on PEN substrate increased from 22 to 55 nm with increased growth duration from 2 to 8 h, respectively. The high-resolution transmission electron microscopy image suggested that [0 0 0 1] is the preferred growth direction for ZnO nanorods. The PL results demonstrated that ZnO nanorods grown for shorter or longer than 5 h exhibited a strong PL peak at around 420 nm (indigo emission).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdulgafour HI, Yam FK et al (2011) ZnO nanocoral reef grown on porous silicon substrates without catalyst. J Alloy Compd 509(18):5627–5630

    Article  Google Scholar 

  • Anas S, Mangalaraja R et al (2010) Studies on the evolution of ZnO morphologies in a thermohydrolysis technique and evaluation of their functional properties. J Hazard Mater 175(1):889–895

    Article  Google Scholar 

  • Bedia EL, Murakami S et al (2001) Structural development and mechanical properties of polyethylene naphthalate/polyethylene terephthalate blends during uniaxial drawing. Polymer 42(17):7299–7305

    Article  Google Scholar 

  • Bo Z, Qing-Shan L et al (2006) White light emission from the composite system of ZnO/porous Si. Chin Phys Lett 23(5):1299

    Article  Google Scholar 

  • Coleman VA, Jagadish C (2006) Basic properties and applications of ZnO. In: Jagadish C, Pearton S (eds) Zinc oxide bulk, thin films and nanostructures. Processing, properties and applications. Elsevier, Oxford, pp 1–20

  • Göpel W, Lampe U (1980) Influence of defects on the electronic structure of zinc oxide surfaces. Phys Rev B 22:6447–6462

    Article  Google Scholar 

  • Jeong Y, Shin C et al (2011) Effects of growth duration on the structural and optical properties of ZnO nanorods grown on seed-layer ZnO/polyethylene terephthalate substrates. Appl Surf Sci 257(24):10358–10362

    Article  Google Scholar 

  • Jiang C, Sun X et al (2008) High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Appl Phys Lett 92(14):143101–143103

    Article  Google Scholar 

  • Kenanakis G, Androulidaki M et al (2007) Photoluminescence of ZnO nanostructures grown by the aqueous chemical growth technique. Superlattices Microstruct 42(1):473–478

    Article  Google Scholar 

  • Khranovskyy V, Yakimova R et al (2012) Comparative PL study of individual ZnO nanorods, grown by APMOCVD and CBD techniques. Phys B Condens Matter 407(10):1538–1542

    Article  Google Scholar 

  • Lee J, Gao W et al (2005) Sputtered deposited nanocrystalline ZnO films: a correlation between electrical, optical and microstructural properties. Appl Phys A Mater Sci Process 80(8):1641–1646

    Article  Google Scholar 

  • Lee J, Park J-S et al (2009) The influence of the gate dielectrics on threshold voltage instability in amorphous indium-gallium-zinc oxide thin film transistors. Appl Phys Lett 95(12):123502–123503

    Article  Google Scholar 

  • Li Q, Kumar V et al (2005) Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem Mater 17(5):1001–1006

    Article  Google Scholar 

  • Li Q, Bian J et al (2010) Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method. Appl Surf Sci 256(6):1698–1702

    Article  MathSciNet  Google Scholar 

  • Lin C-C, Chen H-P et al (2005) Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates. Appl Phys Lett 86(18):183103

    Article  Google Scholar 

  • Liu F, Cao P et al (2005) Well-aligned zinc oxide nanorods and nanowires prepared without catalyst. J Cryst Growth 274(1):126–131

    Article  Google Scholar 

  • Liu Z, Ong C et al (2006) Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties. Appl Phys Lett 88(5):053110–053113

    Article  Google Scholar 

  • Nadarajah A, Word RC et al (2008) Flexible inorganic nanowire light-emitting diode. Nano Lett 8(2):534–537

    Article  Google Scholar 

  • Ok Jung I, Young Park J et al (2012) Substrate dependent growth modes of ZnO nanorods grown by metalorganic chemical vapor deposition. J Cryst Growth 355(1):78–83

    Article  Google Scholar 

  • Pradhan D, Kumar M et al (2008) One-dimensional and two-dimensional ZnO nanostructured materials on a plastic substrate and their field emission properties. J Phys Chem C 112(18):7093–7096

    Article  Google Scholar 

  • Rai P, Song H-M et al (2012) Microwave assisted hydrothermal synthesis of single crystalline ZnO nanorods for gas sensor application. Mater Lett 68:90–93

    Article  Google Scholar 

  • Ryu Y, Lee TS et al (2006) Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Appl Phys Lett 88(24):241103–241108

    Article  Google Scholar 

  • Shabannia R, Abu Hassan H (2013a) Growth and characterization of aligned ZnO nanorods synthesized on porous silicon. Mater Lett 98:135–137

    Article  Google Scholar 

  • Shabannia R, Abu Hassan H (2013b) Growth and characterization of vertically aligned ZnO nanorods grown on porous silicon: effect of precursor concentration. Superlattices Microstruct 62:242–250

    Article  Google Scholar 

  • Shabannia R, Hassan HA (2014) Controllable vertically aligned ZnO nanorods on flexible polyethylene naphthalate (PEN) substrate using chemical bath deposition synthesis. Appl Phys A 114:579–584

    Article  Google Scholar 

  • Shin CM, Heo JH et al (2012) Structural and optical properties of hydrothermally grown zinc oxide nanorods on polyethersulfone substrates as a function of the growth temperature and duration. Thin Solid Films 520(7):2449–2454

    Article  Google Scholar 

  • Su Kim M, Gug Yim K et al (2011) Thermal annealing effects of MBE-seed-layers on properties of ZnO nanorods grown by hydrothermal method. J Cryst Growth 326(1):195–199

    Article  Google Scholar 

  • Umar A, Karunagaran B et al (2006) Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation. Nanotechnology 17(16):4072

    Article  Google Scholar 

  • Vanheusden K, Warren W et al (1995) Impact of Pb doping on the optical and electronic properties of ZnO powders. Appl Phys Lett 67(9):1280–1282

    Article  Google Scholar 

  • Vanheusden K, Seager C et al (1996) Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl Phys Lett 68(3):403–405

    Article  Google Scholar 

  • Wang R-C, Liu C-P et al (2005) ZnO symmetric nanosheets integrated with nanowalls. Appl Phys Lett 87(5):053103

    Article  Google Scholar 

  • Wu F, Yue W et al (2012) Performance correlated with device layout and illumination area in solar cells based on polymer and aligned ZnO nanorods. Sol Energy 86(5):1459–1469

    Article  Google Scholar 

  • Zainizan Sahdan M, Hafiz Mamat M et al (2010) Heat treatment effects on the surface morphology and optical properties of ZnO nanostructures. Phys Status Solidi C 7(9):2286–2289

    Article  Google Scholar 

  • Zhao X, Lee JY et al (2009) Dependence of the properties of hydrothermally grown ZnO on precursor concentration. Phys E Low Dimens Syst Nanostruct 41(8):1423–1426

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the financial support of Babol University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Shabannia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabannia, R. Effects of Growth Duration and Precursor Concentration on the Growth of ZnO Nanorods Synthesized by Chemical Bath Deposition. Iran. J. Sci. Technol. Trans. Sci. 40, 19–25 (2016). https://doi.org/10.1007/s40995-016-0005-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-016-0005-z

Keywords

Navigation