Skip to main content
Log in

Polyharmonic Maass forms for \(\text {PSL}(2,{\mathbb Z})\)

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We discuss the space of polyharmonic Maass forms of even integer weight on \(\text {PSL}(2,\mathbb Z)\backslash \mathbb H\). We explain the role of the real-analytic Eisenstein series \(E_k(z,s)\) and the differential operator \(\frac{\partial }{\partial s}\) in this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The partial differential equations literature assigns order 2m to \(\left( \Delta _k \right) ^m\) when treated in terms of the differential operators \(\frac{\partial }{\partial x}\) and \(\frac{\partial }{\partial y}\). A second conflict is that p-harmonic Maass form is used by Bruggeman [9] with a different meaning, to refer to a function annihilated by the p-Laplacian, in which p corresponds to the weight parameter k in our notation.

  2. Bruggeman [8, Sect. 1.2.4] uses a family variable s that equals \(s_{usual}-\frac{1}{2}\) with \(s=s_{usual}\) used here.

  3. With our scaling \(E_{k}(z, 0) = \frac{1}{2}G_k(z)\), where \(G_k(z)\) is the usual unnormalized holomorphic Eisenstein series in Serre [29].

  4. The terminology is used in Bruinier, Ono and Rhoades [11], who call this space \(H_k\), omitting the \(+\), see [11, Remark 6].

  5. Siegel’s definition of the Eisenstein series has an extra factor of 2 compared to (1.3).

  6. The constant can be found using Proposition 7.1 as \(s \rightarrow 0\) in \(\xi _2( {\widehat{E}}_2(z, s))=(\overline{s} +1) (\overline{s} {\widehat{E}}_0(z, - \overline{s})),\) using the simple pole of \({\widehat{E}}_0(z, s)\) at \(s=0\) with residue \(-\frac{1}{2}\).

References

  1. Almansi, E.: Sull’ integrazione dell’equazione differenzale \(\Delta ^{2u}=0\). Ann. Mat. Ser. III(11), 1–59 (1899)

    Article  Google Scholar 

  2. Andersen, N., Lagarias, J. C., Rhoades, R. C.: Shifted polyharmonic Maass forms for \(PSL(2, \mathbb{Z})\) (in preparation)

  3. Aronszajn, N., Crease, T.M., Lipkin, L.J.: Polyharmonic Functions. Oxford University Press, Oxford (1983)

    MATH  Google Scholar 

  4. Borcherds, R.E.: The Gross-Kohnen-Zagier theorem in higher dimensions. Duke Math. J. 97, 219–233 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borel, A.: Automorphic Forms on \({\rm SL}_2({ R})\). Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  6. Bringmann, K., Diamantis, N., Raum, M.: Mock period functions, sesquiharmonic Maass forms, and non-critical values of \(L\)-functions. Adv. Math. 233, 115–134 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bringmann, K., Ono, K.: Lifting cusp forms to Maass forms with an application to partitions. Proc. Natl. Acad. USA 104, 3725–3731 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bruggeman, R.: Families of Automorphic Forms. Birkhäuser, Basel (1994)

    Book  MATH  Google Scholar 

  9. Bruggeman, R.: Harmonic lifts of modular forms. Ramanujan J. 33(1), 55–82 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruinier, J., Funke, J.: On two geometric theta lifts. Duke Math. J. 125, 45–90 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bruinier, J.H., Ono, K., Rhoades, R.: Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues. Math. Ann. 342(3), 673–693 (2008) (Erratum 345(1), 31 (2009))

  12. Bump, D.: Automorphic Forms and Representations. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  13. Duke, W., Imamoglu, Ö., Tóth, Á.: Cycle integrals of the \(J\)-function and mock modular forms. Ann. Math. 173(2), 947–981 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duke, W., Imamoglu, Ö., Tóth, Á.: Real quadratic analogous of traces of singular moduli. IMRN 13, 3082–3094 (2011)

    MATH  Google Scholar 

  15. Duke, W., Imamoglu, Ö., Tóth, Á.: Regularized inner products of modular functions. Ramanujan J. doi:10.1007/s11139-013-9544-5

  16. Duke, W., Li, Y.: Harmonic Maass forms of weight one. Duke Math. J. 164(1), 39–113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Katayama, K.: A generalization of gamma functions and Kronecker’s limit formulas. J. Number Theory 130, 1642–1674 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kent, Z.: p-adic analysis and mock modular forms. Ph.D. Thesis, University of Hawaii (2010)

  19. Kubota, T.: Elementary Theory of Eisenstein Series. Halstead Press, New York (1973)

    MATH  Google Scholar 

  20. Kudla, S.: Special cycles and derivatives of Eisenstein series. Heegner Points and Rankin L-series. Mathematicla Sciences Research Institute Publications, vol. 49, pp. 243–270. Cambridge University Press, Cambridge (2004)

  21. Kudla, S., Rapoport, M., Yang, T.-H.: Derivatives of Eisenstein series and Faltings heights. Compos. Math. 140, 887–951 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kudla, S., Yang, T.: Eisenstein series for \(SL(2)\). Sci. China Math. 53(9), 2275–2316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maass, H.: Die Differentialgleichungen in der Theorie der elliptischen Modulfunktionen. Math. Ann. 125, 235–263 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  24. Maass, H.: Lectures on Modular Functions of One Complex Variable. Tata Institute of Fundamental Research, Bombay (1964) (revised 1983)

  25. Miyake, T.: Modular Forms. Translated and corrected by Y. Maeda. Springer, New York (1989, reprinted 2006)

  26. NIST Digital Library of Mathematical Functions. http://www.dlmf.nist.gov/, Release 1.0.7 of 2014-03-21

  27. Ono, K.: Unearthing the visions of a master: harmonic Maass forms and number theory. In: Proceedings of the 2008 Harvard-MIT Current Developments in Mathematics Conference, pp. 347–454. Somerville (2009)

  28. Render, H.: Real Bargmann spaces, Fischer decompositions, and sets of uniqueness for polyharmonic functions. Duke Math. J. 142(2), 313–352 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Serre, J.-P.: A Course in Arithmetic. Springer, New York (1973)

    Book  MATH  Google Scholar 

  30. Siegel, C.L.: Advanced analytic number theory. Fundamental Research Studies in Mathematics, vol. 9, 2nd edn. Tata Institute of Fundamental Research, Mumbai (1980)

  31. Stark, H.M.: Class fields and modular forms of weight one. Lecture Notes in Mathematics, vol. 601, pp. 277–287. Springer, Berlin (1977)

  32. Whittaker, E.M., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1927) (reissued 1996)

  33. Yang, T.-H.: Faltings heights and the derivative of Zagier’s Eisenstein series. Hegner Points and Rankin L-series. Mathematical Sciences Research Institute Publications, vol. 49, pp. 271–284. Cambridge University Press, Cambridge (2004)

  34. Yang, T.-H.: The second term of an Eisenstein series. In: Second International Congress of Chinese Mathematicians. New Studies in Advanced Mathematics, vol. 4, pp. 233–248. International Press, Somerville (2004)

  35. Zagier, D.: Eisenstein series and the Riemann zeta function. In: Automorphic Forms, Representation Theory and Arithmetic (Bombay, 1979). Studies in Mathematics, vol. 10, pp. 275–301. Tata Institute of Fundamental Research, Bombay (1981)

  36. Zagier, D.: Elliptic modular forms and their applications. In: The 1-2-3 of Modular Forms: Lectures at a Summer School in Nordfjordeid, pp. 1–103. Universitext, Springer, Berlin (2008)

Download references

Acknowledgments

The authors thank N. Andersen, W. Duke and the reviewer for helpful comments. The first author thanks the Clay Foundation for support as a Clay Senior Fellow at ICERM, an NSF-supported institute, where some work on this paper was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Rhoades.

Additional information

Dedicated to the memory of Marvin Knopp.

Research of the first author was partially supported by NSF Grants DMS-1101373 and DMS-1401224. Research of the second author was partially supported by an NSF Mathematical Sciences Postdoctoral Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagarias, J.C., Rhoades, R.C. Polyharmonic Maass forms for \(\text {PSL}(2,{\mathbb Z})\) . Ramanujan J 41, 191–232 (2016). https://doi.org/10.1007/s11139-015-9729-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-015-9729-1

Keywords

Mathematics Subject Classification

Navigation