Skip to main content
Log in

Corrosion of nickel-based alloys fabricated through additive manufacturing: a review

  • Review Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Traditionally manufactured nickel-based alloys (NiBA) are widely used for their high oxidation and corrosion resistance at extreme temperatures. Recently, additive manufacturing (AM) is being rapidly used to manufacture NiBA due to the ease of obtaining complex forms, low cost, and less waste generation. However, AM route makes NiBA vulnerable to corrosion and eventual failure. Yet, there is a lack of understanding of the effects of AM route on localized corrosion resistance in NiBA. This manuscript reviews the effects of various AM process parameters on the localized corrosion resistance of NiBA. Based on the data gathering and analysis, manufacturing steps for NiBA can be optimized for corrosion resistance. This review helps the community to understand the current and future needs in research and development in additive manufacturing of alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright 2019 Elsevier B.V

Fig. 4

Copyright 2018 Elsevier B.V

Fig. 5

Copyright 2015 AIP Publishing

Fig. 6

Copyright 2019 Elsevier B.V., and b Crevice corrosion in IN718 produced via SLM [91]

Fig. 7
Fig. 8
Fig. 9
Fig. 10

Copyright 2019 Elsevier B.V

Fig. 11

Similar content being viewed by others

Abbreviations

AM:

Additive manufacturing

AMed:

Additively manufactured

DED:

Direct energy deposition

DMLS:

Direct metal laser sintering

EBM:

Electron beam melting

EBSD:

Electron backscatter diffraction

EIS:

Electrochemical impedance spectroscopy

FCC:

Face-centered cubic

LMD:

Laser metal deposition

LOF:

Lack of fusion

LPBF:

Laser powder bed fusion

LSF:

Laser solid forming

L-UHF:

Laser ultra-high frequency

NDT:

Non-destructive testing

NiBA:

Nickel-based alloys

PBF:

Power bed fusion

PP:

Potentiodynamic polarization

SLM:

Selective laser melting

WAAM:

Wire-arc AM

References

  1. Graybill B et al (2018) Additive Manufacturing of Nickel-Based Superalloys. In: ASME 2018 13th International Manufacturing Science and Engineering Conference. https://doi.org/10.1115/msec2018-6666

  2. Jha S et al (2020) Influence of morphology on electrochemical and capacity performance of open-porous structured electrodes. J Appl Electrochem 50(2):231–244. https://doi.org/10.1007/s10800-019-01378-z

    Article  Google Scholar 

  3. Chen YRA, Jha S, Parkinson DY, Zhang B, Elwany A, Liang H (2021) Tomography of 3D-Printed Lattice Structured Aluminum-Silicon Alloy and Its Deformation. 3D Print Add Manuf. 8(1):42–50. https://doi.org/10.1089/3dp.2019.0200

  4. Kulkarni AJAAP (2018) Additive Manufacturing of Nickel Based Superalloy. arXiv:1805.11664

  5. Ibrahim H et al (2018) In Vitro Corrosion Assessment of Additively Manufactured Porous NiTi Structures for Bone Fixation Applications. 8(3): 164. https://doi.org/10.3390/met8030164

  6. Tan HW, Tran T, Chua CK (2016) A review of printed passive electronic components through fully additive manufacturing methods. Virt Phys Prototyp 11(4):271–288. https://doi.org/10.1080/17452759.2016.1217586

    Article  Google Scholar 

  7. Jha S et al (2021) Additively manufactured electrodes for supercapacitors: a review. Appl Mater Today, 101220.https://doi.org/10.1016/j.apmt.2021.101220

  8. (2021) Tomography of 3D-printed lattice structured aluminum-silicon alloy and its deformation. 3D Print Addit Manuf 8(1):42–50.https://doi.org/10.1089/3dp.2019.0200

  9. Guessasma S et al (2015) Challenges of additive manufacturing technologies from an optimisation perspective. Int J Simul Multisci Des Optim 6:A9

    Article  Google Scholar 

  10. Francois MM et al (2017) Modeling of additive manufacturing processes for metals: challenges and opportunities. Curr Opin Solid State Mater Sci 21(4):198–206. https://doi.org/10.1016/j.cossms.2016.12.001

    Article  Google Scholar 

  11. Pereira T, Kennedy JV, Potgieter J (2019) A comparison of traditional manufacturing vs additive manufacturing, the best method for the job. Procedia Manuf. 30:11–18. https://doi.org/10.1016/j.promfg.2019.02.003

    Article  Google Scholar 

  12. Gutowski T et al (2017) Note on the rate and energy efficiency limits for additive manufacturing. J Ind Ecol 21(S1):69–79. https://doi.org/10.1111/jiec.12664

    Article  Google Scholar 

  13. Huang SH et al (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67(5):1191–1203. https://doi.org/10.1007/s00170-012-4558-5

    Article  Google Scholar 

  14. Gorsse S et al (2017) Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci Technol Adv Mater 18(1):584–610. https://doi.org/10.1080/14686996.2017.1361305

    Article  Google Scholar 

  15. Peters KR, Whittle DP, Stringer J (1976) Oxidation and hot corrosion of nickel-based alloys containing molybdenum. Corr Sci 16(11):791–804. https://doi.org/10.1016/0010-938X(76)90010-X

    Article  Google Scholar 

  16. Hemmersmeier U, Feller-Kniepmeier M (1998) Element distribution in the macro-and microstructure of nickel base superalloy CMSX-4. Mater Sci Eng A 248(1–2):87–97. https://doi.org/10.1016/S0921-5093(98)00516-4

    Article  Google Scholar 

  17. Jha S et al (2020) Bimetallic tungstate nanoparticle-decorated-lignin electrodes for flexible supercapacitors. Mater Adv 1(6):2124–2135. https://doi.org/10.1039/D0MA00494D

    Article  Google Scholar 

  18. Jha S et al (2020) NiWO4 nanoparticle decorated lignin as electrodes for asymmetric flexible supercapacitors. J Mater Chem C 8(10):3418–3430. https://doi.org/10.1039/C9TC05811G

    Article  Google Scholar 

  19. Hosseini E, Popovich V (2019) A review of mechanical properties of additively manufactured Inconel 718. Addit Manuf 30:100877. https://doi.org/10.1016/j.addma.2019.100877

    Article  Google Scholar 

  20. Komarasamy M et al (2019) Microstructure, fatigue, and impact toughness properties of additively manufactured nickel alloy 718. Addit Manuf 28:661–675. https://doi.org/10.1016/j.addma.2019.06.009

    Article  Google Scholar 

  21. Juillet C et al (2018) Characterization and oxidation resistance of additive manufactured and forged IN718 Ni-based superalloys. Corros Sci 142:266–276. https://doi.org/10.1016/j.corsci.2018.07.032

    Article  Google Scholar 

  22. Doi M, Miyazaki T, Wakatsuki T (1984) The effect of elastic interaction energy on the morphology of γ′precipitates in nickel-based alloys. Mater Sci Eng 67(2):247–253. https://doi.org/10.1016/0025-5416(84)90056-9

    Article  Google Scholar 

  23. Tang S et al (2016) Coarsening behavior of gamma prime precipitates in a nickel based single crystal superalloy. J Mater Sci Technol 32(2):172–176. https://doi.org/10.1016/j.jmst.2015.10.005

    Article  Google Scholar 

  24. Li C et al (2018) Residual stress in metal additive manufacturing. Procedia Cirp 71:348–353. https://doi.org/10.1016/j.procir.2018.05.039

    Article  Google Scholar 

  25. Wylie CM et al (2007) Corrosion of nickel-based dental casting alloys. Dental Mater 23(6):714–723. https://doi.org/10.1016/j.dental.2006.06.011

    Article  Google Scholar 

  26. Renderos M et al (2017) Microstructure characterization of recycled IN718 powder and resulting laser clad material. Mater Charact 134:103–113. https://doi.org/10.1016/j.matchar.2017.09.029

    Article  Google Scholar 

  27. Wanderka N, Glatzel U (1995) Chemical composition measurements of a nickel-base superalloy by atom probe field ion microscopy. Mater Sci Eng A 203(1–2):69–74. https://doi.org/10.1016/0921-5093(95)09825-9

    Article  Google Scholar 

  28. Tiley J et al (2009) Coarsening kinetics of γ′ precipitates in the commercial nickel base Superalloy René 88 DT. Acta Mater 57(8):2538–2549. https://doi.org/10.1016/j.actamat.2009.02.010

    Article  Google Scholar 

  29. Arısoy YM et al (2017) Influence of scan strategy and process parameters on microstructure and its optimization in additively manufactured nickel alloy 625 via laser powder bed fusion. Int J Adv Manuf Technol 90(5):1393–1417. https://doi.org/10.1007/s00170-016-9429-z

    Article  Google Scholar 

  30. Beese AM et al (2018) Absence of dynamic strain aging in an additively manufactured nickel-base superalloy. Nat Commun 9(1):1–8. https://doi.org/10.1038/s41467-018-04473-5

    Article  MathSciNet  Google Scholar 

  31. Dehghanghadikolaei A et al (2019) Improving corrosion resistance of additively manufactured nickel–titanium biomedical devices by micro-arc oxidation process. J Mater Sci 54(9):7333–7355. https://doi.org/10.1007/s10853-019-03375-1

    Article  Google Scholar 

  32. Douglass D, Thomas G, Roser W (1964) Ordering, stacking faults and stress corrosion cracking in austenitic alloys. Corrosion 20(1):15t–28t. https://doi.org/10.5006/0010-9312-20.1.15t

    Article  Google Scholar 

  33. Lou X, Andresen PL, Rebak RB (2018) Oxide inclusions in laser additive manufactured stainless steel and their effects on impact toughness and stress corrosion cracking behavior. J Nucl Mater 499:182–190. https://doi.org/10.1016/j.jnucmat.2017.11.036

    Article  Google Scholar 

  34. Ma D et al (2017) Crystallographic texture in an additively manufactured nickel-base superalloy. Mater Sci Eng A 684:47–53. https://doi.org/10.1016/j.msea.2016.12.028

    Article  Google Scholar 

  35. Rebak R (2011) Stress corrosion cracking (SCC) of nickel-based alloys. Stress corrosion cracking. Elsevier, Amsterdam, pp 273–306

    Chapter  Google Scholar 

  36. Was G et al (2007) Corrosion and stress corrosion cracking in supercritical water. J Nuclear Mater 371(1–3):176–201. https://doi.org/10.1016/j.jnucmat.2007.05.017

    Article  Google Scholar 

  37. Xu J et al (2020) On the strengthening and embrittlement mechanisms of an additively manufactured Nickel-base superalloy. Materialia 10:100657. https://doi.org/10.1016/j.mtla.2020.100657

    Article  Google Scholar 

  38. Zuback J, DebRoy T (2018) The hardness of additively manufactured alloys. Materials 11(11):2070. https://doi.org/10.3390/ma11112070

    Article  Google Scholar 

  39. Zuback J et al (2019) Impact of chemical composition on precipitate morphology in an additively manufactured nickel base superalloy. J Alloy Compd 798:446–457

    Article  Google Scholar 

  40. Vayre B, Vignat F, Villeneuve F (2012) Designing for additive manufacturing. Procedia CIrP 3:632–637. https://doi.org/10.1016/j.procir.2012.07.108

    Article  Google Scholar 

  41. Gao W et al (2015) The status, challenges, and future of additive manufacturing in engineering. Comput-Aided Des 69:65–89. https://doi.org/10.1016/j.cad.2015.04.001

    Article  Google Scholar 

  42. Wong KV, Hernandez A (2012) A review of additive manufacturing. Int Scholarly Res Not. https://doi.org/10.5402/2012/208760

    Article  Google Scholar 

  43. Gibson I et al (2014) Additive manufacturing technologies, vol 17. Springer, New York

    Google Scholar 

  44. Gebhardt A (2011) Understanding additive manufacturing

  45. Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928. https://doi.org/10.1007/s11665-014-0958-z

    Article  Google Scholar 

  46. Herzog D et al (2016) Additive manufacturing of metals. Acta Mater 117:371–392. https://doi.org/10.1016/j.actamat.2016.07.019

    Article  Google Scholar 

  47. Murr LE et al (2012) Fabrication of metal and alloy components by additive manufacturing: examples of 3D Materials Science 1:42–54. https://doi.org/10.1016/S2238-7854(12)70009-1

  48. Seow CE et al (2020) Effect of crack-like defects on the fracture behaviour of Wire+ Arc Additively Manufactured nickel-base Alloy 718. Addit Manuf 36:101578. https://doi.org/10.1016/j.addma.2020.101578

    Article  Google Scholar 

  49. Vanmeensel K et al (2018) Additively manufactured metals for medical applications. Additive manufacturing. Elsevier, Amsterdam, pp 261–309

    Chapter  Google Scholar 

  50. Dhinakaran V et al (2020) Wire arc additive manufacturing (WAAM) process of nickel based superalloys—a review. Mater Today Proc 21:920–925. https://doi.org/10.1016/j.matpr.2019.08.159

    Article  Google Scholar 

  51. Sander G et al (2018) Corrosion of additively manufactured alloys: a review. Corrosion 74(12):1318–1350. https://doi.org/10.5006/2926

    Article  Google Scholar 

  52. Sidambe AT (2014) Biocompatibility of advanced manufactured titanium implants—A review. Materials 7(12):8168–8188. https://doi.org/10.3390/ma7128168

    Article  Google Scholar 

  53. Spears TG, Gold SA (2016) In-process sensing in selective laser melting (SLM) additive manufacturing. Integr Mater Manuf Innov 5(1):16–40. https://doi.org/10.1186/s40192-016-0045-4

    Article  Google Scholar 

  54. Loh L-E et al (2015) Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061. Int J Heat Mass Transf 80:288–300. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.014

    Article  Google Scholar 

  55. Parthasarathy J et al (2010) Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater 3(3):249–259. https://doi.org/10.1016/j.jmbbm.2009.10.006

    Article  Google Scholar 

  56. Safdar A et al (2012) Effect of process parameters settings and thickness on surface roughness of EBM produced Ti-6Al-4V. Rapid Prototyp J. https://doi.org/10.1108/13552541211250391

    Article  Google Scholar 

  57. Li X et al (2009) Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Mater Lett 63(3–4):403–405. https://doi.org/10.1016/j.matlet.2008.10.065

    Article  Google Scholar 

  58. Dass A, Moridi A (2019) State of the art in directed energy deposition: from additive manufacturing to materials design. Coatings 9(7):418. https://doi.org/10.3390/coatings9070418

    Article  Google Scholar 

  59. Schneider-Maunoury C et al (2017) Functionally graded Ti6Al4V-Mo alloy manufactured with DED-CLAD® process. Addit Manuf 17:55–66. https://doi.org/10.1016/j.addma.2017.07.008

    Article  Google Scholar 

  60. Shim D-S et al (2016) Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process. Opt Laser Technol 86:69–78. https://doi.org/10.1016/j.optlastec.2016.07.001

    Article  Google Scholar 

  61. Bandyopadhyay A, Heer B (2018) Additive manufacturing of multi-material structures. Mater Sci Eng R Rep 129:1–16. https://doi.org/10.1016/j.mser.2018.04.001

    Article  Google Scholar 

  62. Lu X et al (2017) Open-source wire and arc additive manufacturing system: formability, microstructures, and mechanical properties. Int J Adv Manuf Technol 93(5):2145–2154. https://doi.org/10.1007/s00170-017-0636-z

    Article  Google Scholar 

  63. Milewski JO (2017) Additive manufacturing of metals. Appl Mech Mater 2017

  64. Najmon JC, Raeisi S, Tovar A (2019) Review of additive manufacturing technologies and applications in the aerospace industry. Addit Manuf Aerosp Ind. https://doi.org/10.1016/B978-0-12-814062-8.00002-9

    Article  Google Scholar 

  65. Knezović N, Topić A (2018) Wire and Arc Additive Manufacturing (WAAM)—a new advance in manufacturing. In: International Conference “New Technologies, Development and Applications”. Springer, New York

  66. Dinovitzer M et al (2019) Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure. Addit Manuf 26:138–146. https://doi.org/10.1016/j.addma.2018.12.013

    Article  Google Scholar 

  67. Rodrigues TA et al (2019) Current status and perspectives on wire and arc additive manufacturing (WAAM). Materials 12(7):1121. https://doi.org/10.3390/ma12071121

    Article  Google Scholar 

  68. Horgar A et al (2018) Additive manufacturing using WAAM with AA5183 wire. J Mater Process Technol 259:68–74. https://doi.org/10.1016/j.jmatprotec.2018.04.014

    Article  Google Scholar 

  69. Yap CY et al (2015) Review of selective laser melting: materials and applications. Appl Phys Rev 2(4):041101. https://doi.org/10.1063/1.4935926

    Article  Google Scholar 

  70. Nguejio J et al (2019) Comparison of microstructure features and mechanical properties for additive manufactured and wrought nickel alloys 625. Mater Sci Eng A 764:138214. https://doi.org/10.1016/j.msea.2019.138214

    Article  Google Scholar 

  71. Zhang F et al (2018) Effect of heat treatment on the microstructural evolution of a nickel-based superalloy additive-manufactured by laser powder bed fusion. Acta Mater 152:200–214. https://doi.org/10.1016/j.actamat.2018.03.017

    Article  Google Scholar 

  72. Ges A, Fornaro O, Palacio H (2007) Coarsening behaviour of a Ni-base superalloy under different heat treatment conditions. Mater Sci Eng A 458(1–2):96–100. https://doi.org/10.1016/j.msea.2006.12.107

    Article  Google Scholar 

  73. Shen C et al (2018) The influence of post-production heat treatment on the multi-directional properties of nickel-aluminum bronze alloy fabricated using wire-arc additive manufacturing process. Addit Manuf 23:411–421. https://doi.org/10.1016/j.addma.2018.08.008

    Article  Google Scholar 

  74. Detor A, Schuh C (2007) Microstructural evolution during the heat treatment of nanocrystalline alloys. J Mater Res 22(11):3233–3248. https://doi.org/10.1557/JMR.2007.0403

    Article  Google Scholar 

  75. Schneider J, Lund B, Fullen M (2018) Effect of heat treatment variations on the mechanical properties of Inconel 718 selective laser melted specimens. Addit Manuf 21:248–254. https://doi.org/10.1016/j.addma.2018.03.005

    Article  Google Scholar 

  76. Osoba L et al (2019) Corrosion evaluation of superalloys Haynes 282 and Inconel 718 in Hydrochloric acid 804:376–384. https://doi.org/10.1016/j.jallcom.2019.06.196

  77. Jha S et al (2019) Design and synthesis of a high performance coating. In: ASME 2019 international mechanical engineering congress and exposition. https://doi.org/10.1115/imece2019-10433

  78. Forsyth DS (2011) Non-destructive testing for corrosion. Corrosion Fatigue and Environmentally Assisted Cracking in Aging Military Vehicles (RTO-AG-AVT-140)

  79. Guo P et al (2018) Electrochemical behavior of Inconel 718 fabricated by laser solid forming on different sections. Corros Sci 132:79–89. https://doi.org/10.1016/j.corsci.2017.12.021

    Article  Google Scholar 

  80. Fontana MG (2005) Corrosion engineering. Tata McGraw-Hill Education

  81. Isaacs HS (2002) Aspects of Corrosion from the ECS Publications. J-Electrochem Soc 149(12):S85–S85

    Article  Google Scholar 

  82. Pourbaix M (1984) Electrochemical corrosion of metallic biomaterials. Biomaterials 5(3):122–134. https://doi.org/10.1016/0142-9612(84)90046-2

    Article  Google Scholar 

  83. Rechnitz GA (1963) Controlled-potential analysis, vol 13. Oxford, Oxford

    Google Scholar 

  84. Silverman D, Revie W (2000) Uhlig’s Corrosion Handbook. Wiley, New York

    Google Scholar 

  85. Jha S et al (2020) Design and synthesis of lignin-based flexible supercapacitors. ACS Sustaine Chem Eng 8(1):498–511. https://doi.org/10.1021/acssuschemeng.9b05880

    Article  Google Scholar 

  86. Jha S et al () Design and synthesis of high performance flexible and green supercapacitors ma2020de of manganese-dioxide-decorated alkali lignin 2(5):e184. https://doi.org/10.1002/est2.184

  87. Esmailzadeh S, Aliofkhazraei M, Sarlak H (2018) Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: a review. Protect Metals Phys Chem Surf 54(5):976–989. https://doi.org/10.1134/S207020511805026X

    Article  Google Scholar 

  88. Bellezze T, Giuliani G, Roventi G (2018) Study of stainless steels corrosion in a strong acid mixture. Part 1: cyclic potentiodynamic polarization curves examined by means of an analytical method. Corros Sci 130:113–125. https://doi.org/10.1016/j.corsci.2017.10.012

    Article  Google Scholar 

  89. Bellezze T et al (2018) Study of stainless steels corrosion in a strong acid mixture. Part 2: anodic selective dissolution, weight loss and electrochemical impedance spectroscopy tests. Corros Sci 130:12–21. https://doi.org/10.1016/j.corsci.2017.10.010

    Article  Google Scholar 

  90. Zhang B et al (2019) Pitting corrosion of SLM Inconel 718 sample under surface and heat treatments. Appl Surf Sci 490:556–567. https://doi.org/10.1016/j.apsusc.2019.06.043

    Article  Google Scholar 

  91. Wang Y, Chen X (2019) Investigation on the microstructure and corrosion properties of Inconel 625 alloy fabricated by wire arc additive manufacturing. Mater Res Express 6(10):106568. https://doi.org/10.1088/2053-1591/ab39f6

    Article  MathSciNet  Google Scholar 

  92. Foley R (1986) Localized corrosion of aluminum alloys—a review. Corrosion 42(5):277–288. https://doi.org/10.5006/1.3584905

    Article  Google Scholar 

  93. Frankel G, Sridhar N (2008) Understanding localized corrosion. Mater Today 11(10):38–44. https://doi.org/10.1016/S1369-7021(08)70206-2

    Article  Google Scholar 

  94. Sato N (1995) The stability of localized corrosion. Corros Sci 37(12):1947–1967. https://doi.org/10.1016/0010-938X(95)00076-V

    Article  Google Scholar 

  95. Hladky K, Dawson J (1981) The measurement of localized corrosion using electrochemical noise. Corros Sci 21(4):317–322. https://doi.org/10.1016/0010-938X(81)90006-8

    Article  Google Scholar 

  96. Li X et al (2020) Graphene-strengthened Inconel 625 alloy fabricated by selective laser melting. Mater Sci Eng A 798:140099. https://doi.org/10.1016/j.msea.2020.140099

    Article  Google Scholar 

  97. Sun R et al (2021) Microstructure, element segregation and performance of Inconel 625 metal layer deposited by laser assisted ultra-high frequency induction deposition. Surf Coat Technol 405:126715. https://doi.org/10.1016/j.surfcoat.2020.126715

    Article  Google Scholar 

  98. Luo S et al (2019) Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments. Addit Manuf 30:100875. https://doi.org/10.1016/j.addma.2019.100875

    Article  Google Scholar 

  99. Klapper HS et al (2017) Critical Factors Affecting the Pitting Corrosion Resistance of Additively Manufactured Nickel Alloy in Chloride Containing Environments. In: CORROSION 2017. NACE International

  100. Li H et al (2018) Effect of heat treatment on the δ phase distribution and corrosion resistance of selective laser melting manufactured Inconel 718 superalloy. 69(10): 1350–1354. https://doi.org/10.1002/maco.201810159

  101. Mythreyi OV et al (2020) Corrosion study of selective laser melted IN718 alloy upon post heat treatment and shot peening 10(12):1562. https://doi.org/10.3390/met10121562

  102. Kong D et al (2019) Effect of TiC content on the mechanical and corrosion properties of Inconel 718 alloy fabricated by a high-throughput dual-feed laser metal deposition system. J Alloys Compds 803:637–648. https://doi.org/10.1016/j.jallcom.2019.06.317

    Article  Google Scholar 

  103. Cabrini M et al (2019) Evaluation of corrosion resistance of alloy 625 obtained by laser powder bed fusion 166(11): 3399. https://doi.org/10.1149/2.0471911jes

  104. Lefky CS et al (2019) Microstructure and corrosion properties of sensitized laser powder bed fusion printed Inconel 718 to dissolve support structures in a self-terminating manner. Addit Manuf 27:526–532. https://doi.org/10.1016/j.addma.2019.03.020

    Article  Google Scholar 

  105. Kong D et al (2019) Anisotropic response in mechanical and corrosion properties of hastelloy X fabricated by selective laser melting. Constr Build Mater 221:720–729. https://doi.org/10.1016/j.conbuildmat.2019.06.132

    Article  Google Scholar 

  106. Zhang LN, Ojo OA (2020) Corrosion behavior of wire arc additive manufactured Inconel 718 superalloy. J Alloys Compds 829:154455. https://doi.org/10.1016/j.jallcom.2020.154455

    Article  Google Scholar 

  107. Asala G, Andersson J, Ojo OA (2019) Hot corrosion behaviour of wire-arc additive manufactured Ni-based superalloy ATI 718Plus®. Corros Sci 158:108086. https://doi.org/10.1016/j.corsci.2019.07.010

    Article  Google Scholar 

  108. Basak S et al (2019) Surface modification of structural material for nuclear applications by electron beam melting: enhancement of microstructural and corrosion properties of Inconel 617. SN Appl Sci 1(7):708. https://doi.org/10.1007/s42452-019-0744-5

    Article  Google Scholar 

  109. You X et al (2016) Preparation of Inconel 740 superalloy by electron beam smelting. J Alloys Compds. 676:202–208. https://doi.org/10.1016/j.jallcom.2016.03.140

    Article  Google Scholar 

  110. You X et al (2018) Effect of solution heat treatment on microstructure and electrochemical behavior of electron beam smelted Inconel 718 superalloy. J Alloys Compds. 741:792–803. https://doi.org/10.1016/j.jallcom.2018.01.159

    Article  Google Scholar 

  111. Karimi P et al (2020) Effect of build location on microstructural characteristics and corrosion behavior of EB-PBF built Alloy 718. Int J Adv Manuf Technol 106(7):3597–3607. https://doi.org/10.1007/s00170-019-04859-9

    Article  Google Scholar 

  112. Xu W et al (2015) Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition. Acta Mater 85:74–84. https://doi.org/10.1016/j.actamat.2014.11.028

    Article  Google Scholar 

  113. Tian Y et al (2014) Rationalization of microstructure heterogeneity in INCONEL 718 builds made by the direct laser additive manufacturing process. Metal Mater Trans A. 45(10):4470–4483. https://doi.org/10.1007/s11661-014-2370-6

    Article  Google Scholar 

  114. Jha S, Ponce V, Seminario JM (2018) Investigating the effects of vacancies on self-diffusion in silicon clusters using classical molecular dynamics. J Mol Model 24(10):290. https://doi.org/10.1007/s00894-018-3814-5

    Article  Google Scholar 

  115. Lesyk DA et al (2020) Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress. Surf Coat Technol 381:125136. https://doi.org/10.1016/j.surfcoat.2019.125136

    Article  Google Scholar 

  116. Mancisidor A et al (2016) Reduction of the residual porosity in parts manufactured by selective laser melting using skywriting and high focus offset strategies 83:864–873. https://doi.org/10.1016/j.phpro.2016.08.090

  117. Mukherjee T, DebRoy T (2018) Mitigation of lack of fusion defects in powder bed fusion additive manufacturing. J Manuf Process 36:442–449. https://doi.org/10.1016/j.jmapro.2018.10.028

    Article  Google Scholar 

  118. Schnur C (2019) Electron Beam - Powder Bed Fusion Of Alloy 718: Influences Of Contour Parameters On Surface And Microstructural Characteristics, p 41

  119. Ali H et al (2018) Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V 712:175–187. https://doi.org/10.1016/j.msea.2017.11.103

  120. Lu Y et al (2015) Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy 75:197–206. https://doi.org/10.1016/j.optlastec.2015.07.009

  121. Liu Y, Yang Y, Wang D (2016) A study on the residual stress during selective laser melting (SLM) of metallic powder. Int J Adv Manuf Technol 87(1):647–656. https://doi.org/10.1007/s00170-016-8466-y

    Article  Google Scholar 

  122. Enrique PD et al (2019) Surface modification of binder-jet additive manufactured Inconel 625 via electrospark deposition. Surf Coat Technol 362:141–149. https://doi.org/10.1016/j.surfcoat.2019.01.108

    Article  Google Scholar 

  123. Zhang B, Li Y, Bai Q (2017) Defect formation mechanisms in selective laser melting: a review. Chin J Mech Eng 30(3):515–527. https://doi.org/10.1007/s10033-017-0121-5

    Article  Google Scholar 

  124. (2014) Effect of Aging Treatment on Pitting Corrosion and Corrosion Fatigue Crack Propagation Behavior of Oil-Grade Alloy 718. In: 8th International Symposium on Superalloy 718 and Derivatives, 643–658. https://doi.org/10.1002/9781119016854.ch50

  125. Osoba LO, Oladoye AM, Ogbonna VE (2019) Corrosion evaluation of superalloys Haynes 282 and Inconel 718 in Hydrochloric acid. J Alloys Compds 804:376–384. https://doi.org/10.1016/j.jallcom.2019.06.196

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Tariq Chagouri for his help with the schematics. Discussions with Drs. Homero Castaneda, Raymundo Case and Jodie Lutkenhaus is acknowledged.

Funding

This review was not funded by any funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, S., Jha, S. & Liang, H. Corrosion of nickel-based alloys fabricated through additive manufacturing: a review. Prog Addit Manuf 7, 1257–1273 (2022). https://doi.org/10.1007/s40964-022-00298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-022-00298-3

Keywords

Navigation