Skip to main content

Advertisement

Log in

Inline additively manufactured functionally graded multi-materials: microstructural and mechanical characterization of 316L parts with H13 layers

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

In the current work, a functionally graded multi-material consisting of stainless steel 316L and hot work tool steel H13 has been fabricated by additive manufacturing (AM). Due to the modification of the recoating apparatus, a lean, multi-material AM process can be achieved via inline selective laser melting. The generated functionally graded specimens are characterized by an equiaxed grain growth at the interfaces of the steel layers, which results in excellent bonding of both constituents. Concerning the mechanical properties, tensile tests confirm that failure occurs within the material layer exhibiting the lower tensile strength. Further, this work analyzes microstructural developments in the melt pools which can predominately be described by the Marangoni effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CC, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89

    Article  Google Scholar 

  2. Wohlers T (2013) Wohlers report 2013: annual worldwide progress report. 3D Printing and Additive Manufacturing State of the Industry, Colorado

    Google Scholar 

  3. Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN, Shindo PW, Medina FR, Wicker RB (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28:1–14

    Article  Google Scholar 

  4. Riemer A, Leuders S, Thöne M, Richard HA, Tröster T, Niendorf T (2014) On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Eng Fract Mech 120:15–25

    Article  Google Scholar 

  5. Holzweissig MJ, Taube A, Brenne F, Schaper M, Niendorf T, Microstructural characterization and mechanical performance of hot work tool steel processed by selective laser melting. Metall Mater Trans B 46 (2015) 545–549

    Article  Google Scholar 

  6. Niendorf T, Leuders S, Riemer A, Brenne F, Tröster T, Richard HA, Schwarze D (2014) Functionally graded alloys obtained by additive manufacturing. Adv Eng Mater 16:857–861

    Article  Google Scholar 

  7. Osakada K, Shiomi M (2006) Flexible manufacturing of metallic products by selective laser melting of powder. Int J Mach Tools Manuf 46:1188–1193

    Article  Google Scholar 

  8. Bogers M, Hadar R, Bilberg A (2016) Additive manufacturing for consumer-centric business models. Technol Forecast Soc Chang 102:225–239

    Article  Google Scholar 

  9. Niendorf T, Leuders S, Riemer A, Richard HA, Tröster T, Schwarze D (2013) Highly anisotropic steel processed by selective laser melting. Metall Mater Trans B 44:794–796

    Article  Google Scholar 

  10. Vilaro T, Colin C, Bartout JD, Nazé L, Sennour M (2012) Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy. Mater Sci Eng A 534:446–451

    Article  Google Scholar 

  11. Wilson JM, Shin YC (2012) Microstructure and wear properties of laser-deposited functionally graded Inconel 690 reinforced with TiC. Surf Coat Technol 207:517–522

    Article  Google Scholar 

  12. Chlebus E, Kuźnicka B, Dziedzic R, Kurzynowski T (2015) Titanium alloyed with rhenium by selective laser melting. Mater Sci Eng A 620:155–163

    Article  Google Scholar 

  13. Sing SL, Yeong WY, Wiria FE (2016) Selective laser melting of titanium alloy with 50 wt% tantalum. J Alloy Compd 660:461–470

    Article  Google Scholar 

  14. Hanzl P, Zetek M, Bakša T, Kroupa T (2015) The influence of processing parameters on the mechanical properties of SLM parts. Procedia Eng 100:1405–1413

    Article  Google Scholar 

  15. Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard HA, Maier HJ (2013) On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting. Int J Fatigue 48:300–307

    Article  Google Scholar 

  16. Tillmann W, Schaak C, Nellesen J, Schaper M, Aydinöz ME, Niendorf T (2015) Functional encapsulation of laser melted Inconel 718 by Arc-PVD and HVOF for post compacting by hot isostatic pressing. Powder Metall 58:259–264

    Article  Google Scholar 

  17. Konchakova N, Müller R (2012) Microcrack evolution in functionally graded material under dynamic loading. Proc Appl Math Mech 12:139–140

    Article  Google Scholar 

  18. Kieback B, Neubrand A, Riedel H (2003) Processing techniques for functionally graded materials. Mater Sci Eng A 362:81–106

    Article  Google Scholar 

  19. Liu ZH, Zhang DQ, Sing SL, Chua CK, Loh LE (2014) Interfacial characterization of SLM parts in multi-material processing. Mater Charact 94:116–125

    Article  Google Scholar 

  20. Niendorf T, Brenne F, Hoyer P, Schwarze D, Schaper M, Grothe R, Wiesener M, Grundmeier G, Maier HJ (2015) Processing of new materials by additive manufacturing. Metall Mat Trans A 46:2829–2833

    Article  Google Scholar 

  21. Yuan P, Gu D (2015) Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites. J Phys D Appl Phys 48:35303

    Article  Google Scholar 

  22. Al Jabbari YS, Koutsoukis T, Barmpagadaki X, Zinelis S (2014) Metallurgical and interfacial characterization of PFM Co–Cr dental alloys fabricated via casting, milling or selective laser melting. Dent Mater 30:e79–e88

    Article  Google Scholar 

  23. Sing SL, Lam LP, Zhang DQ, Liu ZH, Chua CK (2015) Interfacial characterization of SLM parts in multi-material processing. Mater Charact 107:220–227

    Article  Google Scholar 

  24. Gupta A, Talha M (2015) Recent development in modeling and analysis of functionally graded materials and structures. Prog Aerosp Sci 79:1–14

    Article  Google Scholar 

  25. Ao SI (2012) World congress on engineering: WCE 2012 4–6 July. Imperial College London, London, UK, Newswood Ltd; International Association of Engineers, Hong Kong

  26. Kawasaki A, Watanabe R (1997) Concept and P/M fabrication of functionally gradient materials. Ceram Int 23:73–83

    Article  Google Scholar 

  27. Markworth AJ, Ramesh KS, Parks WP Jr, Modelling studies applied to functionally graded materials (1995) J Mater Sci 1995 2183–2193

    Article  Google Scholar 

  28. Udupa G, Rao SS, Gangadharan KV (2014) Functionally graded composite materials. Procedia Mater Sci 5:1291–1299

    Article  Google Scholar 

  29. Sobczak JJ, Drenchev L (2013) Metallic functionally graded materials. J Mater Sci Technol 29:297–316

    Article  Google Scholar 

  30. Nakai Y, Mishima F, Akiyama Y, Nishijima S (2010) Development of magnetic separation system for powder separation. IEEE Trans Appl Supercond 20:941–944

    Article  Google Scholar 

  31. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  32. Thijs L, Kempen K, Kruth J-P, van Humbeeck J (2013) Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater 61:1809–1819

    Article  Google Scholar 

  33. Kurz W, Bezençon C, Gäumann M (2001) Columnar to equiaxed transition in solidification processing. Sci Technol Adv Mater 2:185–191

    Article  Google Scholar 

  34. Gäumann M, Henry S. Cléton F, Wagnière J-D, Kurz W, Gäumann M, Henry S, Cléton F, Wagnière J-D, Kurz W (1999) Epitaxial laser metal forming: analysis of microstructure formation/epitaxial laser metal forming. Mater Sci Eng A 271 271:232–241

    Article  Google Scholar 

  35. Edmonds DV, He K, Rizzo FC, de Cooman BC, Matlock DK, Speer JG (2006) Quenching and partitioning martensite—a novel steel heat treatment. Mater Sci Eng A 438–440:25–34

    Article  Google Scholar 

  36. Kitahara H, Ueji R, Tsuji N, Minamino Y (2006) Crystallographic features of lath martensite in low-carbon steel. Acta Mater 54:1279–1288

    Article  Google Scholar 

  37. Turnbull D (1950) Kinetics of heterogeneous nucleation. J Chem Phys 18:198

    Article  Google Scholar 

  38. Zhang B, Dembinski L, Coddet C (2013) The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Mater Sci Eng A 584:21–31

    Article  Google Scholar 

  39. Yadroitsev I, Krakhmalev P, Yadroitsava I, Johansson S, Smurov I (2013) Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J Mater Process Technol 213:606–613

    Article  Google Scholar 

  40. Voller VR, Prakash C (1987) A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Heat Mass Transfer 30:1709–1719

    Article  Google Scholar 

  41. Carman PC (1997) Fluid flow through granular beds. Trans IChemE 75:32–48

    Article  Google Scholar 

  42. Fredriksson H, Akerlind U (2006) Materials processing at casting. Wiley, Hoboken

    Book  Google Scholar 

  43. Gandin MRCh-A (1994) A coupled finite element-cellular automation model for the prediction of dendritic grain structures in solidification processes. Acta Metall Mater 42:2233–2246

    Article  Google Scholar 

  44. Gu D, Yuan P (2015) Thermal evolution behavior and fluid dynamics during laser additive manufacturing of Al-based nanocomposites. J Appl Phys 118:233109

    Article  Google Scholar 

  45. Yin H, Emi T (2003) Marangoni flow at the gas/melt interface of steel/Marangoni flow at the gas/melt interface of steel. Metall Mater Trans B 34:483–493

    Article  Google Scholar 

  46. Antony NAK (2015) Studies on energy penetration and Marangoni effect during laser melting process. J Eng Sci Technol 10:509–525

    Google Scholar 

  47. Ono Y, Ichi S, Matsumoto Ji (1975) Diffusion of chromium, manganese, and nickel in molten iron. Trans Jpn Inst Metals 16:415–422

    Article  Google Scholar 

  48. Zhong Y, Liu L, Wikman S, Cui D, Shen Z (2016) Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J Nucl Mater 470:170–178

    Article  Google Scholar 

  49. Gusarov AV, Yadroitsev I, Bertrand P, Smurov I (2007) Heat transfer modelling and stability analysis of selective laser melting. Appl Surf Sci 254:975–979

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Hengsbach.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hengsbach, F., Koppa, P., Holzweissig, M.J. et al. Inline additively manufactured functionally graded multi-materials: microstructural and mechanical characterization of 316L parts with H13 layers. Prog Addit Manuf 3, 221–231 (2018). https://doi.org/10.1007/s40964-018-0044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-018-0044-4

Keywords

Navigation