Skip to main content

Advertisement

Log in

Squeeze Overcasting of Bimetallic Composite Al2026/Al–4.5%Cu with Acidic Quenching in Aging Treatment: Characterization of Mechanical Properties and Joint Interface Microstructure

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Keeping in view the structural applications of aluminum alloys, squeeze overcasting has been considered an attractive alternative to deal with the inherent casting defects at the interface region of bimetallic composites. Microstructure at the joint interfacial region highly depends on the casting parameters. For this reason, the current study has considered the most effective parameters including melt temperature, insert preheat temperature, squeeze pressure, pressure duration and time delay to fabricate the defect-free Al2026/Al–4.5%Cu composite. Besides this, the influence of aging treatment with 5%HCl solution quenching has been investigated on yield strength, ultimate tensile strength, percentage elongation and microhardness of interfacial region of the bimetallic joint. Results of the current study show that the melt temperature and squeeze pressure are the most influential parameters to boost mechanical properties. Metallographic analysis based on SEM shows that the optimum set of input parameters (MT = 800 °C, IT = 250 °C, SP = 100 MPa, PD = 150 s, TD = 10 s) offers the strong metallurgical bond between melt and solid insert without any inherent casting defects such as micro-cracks, gas porosity, pinholes, shrinkage voids and hot tearing. EDS analysis depicts that zinc coating is highly concentrated at the interfacial region which facilitates the formation of strong metallic bonding between distinct metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Abbreviations

M T :

Melt temperature

S P :

Squeeze pressure

I T :

Insert preheat temperature

P D :

Pressure duration

T D :

Time delay

YS:

Yield strength

UTS:

Ultimate tensile strength

%El:

Percentage elongation

MH:

Microhardness

SEM:

Scanning electron microscopy

EDS:

Energy-dispersive X-ray spectroscopy

GRA:

Grey relational analysis

References

  1. R.K. Tayal, S. Kumar, V. Singh, A. Gupta, D. Ujjawal, Experimental investigation and evaluation of joint strength of A356/Mg bimetallic fabricated using compound casting process. Int. J. Metalcast. 13(3), 686–699 (2019). https://doi.org/10.1007/s40962-018-0288-2

    Article  CAS  Google Scholar 

  2. M.H. Raza, F. Hafeez, R.Y. Zhong, A. Imran, Investigation of surface roughness in face milling processes. Int. J. Adv. Manuf. Technol. 111(9), 2589–2599 (2020). https://doi.org/10.1007/s00170-020-06188-8

    Article  Google Scholar 

  3. R. Al-Sabur, Tensile strength prediction of aluminium alloys welded by FSW using response surface methodology—comparative review. Mater. Today Proc. 45, 4504–4510 (2021). https://doi.org/10.1016/j.matpr.2020.12.1001

    Article  CAS  Google Scholar 

  4. A.C. Fromm, K. Barienti, A. Selmanovic, S.E. Thürer, F. Nürnberger, H.J. Maier, C. Klose, Oxygen-free compound casting of aluminum and copper in a silane-doped inert gas atmosphere: a new approach to increase thermal conductivity. Int. J. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00910-w

    Article  Google Scholar 

  5. A. Rohatgi, K. Sadayappan, D. Clelland, G. Birsan, Joining light metals with polymer composites through metal overcasting. J. Mater. Process. Technol. 298, 117257 (2021). https://doi.org/10.1016/j.jmatprotec.2021.117257

    Article  CAS  Google Scholar 

  6. J. Feng, B. Ye, L. Zuo, Q. Wang, Q. Wang, H. Jiang, W. Ding, Bonding of aluminum alloys in compound casting. Metall. Mater. Trans. A 48(10), 4632–4644 (2017). https://doi.org/10.1007/s11661-017-4252-1

    Article  CAS  Google Scholar 

  7. A. Sadeghian, N. Iqbal, A review on dissimilar laser welding of steel–copper, steel–aluminum, aluminium–copper, and steel–nickel for electric vehicle battery manufacturing. Opt. Laser Technol. 146, 107595 (2022). https://doi.org/10.1016/j.optlastec.2021.107595

    Article  CAS  Google Scholar 

  8. N. Rajesh Jesudoss Hynes, D. Jones Joseph Jebaraj, M. Selvaraj, M.A. Ali, M.H. Raza, C.I. Pruncu, P. Shenbaga Velu, N.J. Vignesh, Thermal behavior analysis and mechanical characterization of friction stud welded AISI 304/AA6063 joints. J. Braz. Soc. Mech. Sci. Eng. 44(4), 114 (2022). https://doi.org/10.1007/s40430-022-03412-2

    Article  Google Scholar 

  9. Y. Shi, J. Wang, X. Zhou, X. Xue, Post-fire properties of stainless–clad bimetallic steel produced by explosive welding process. J. Constr. Steel Res. 201, 107690 (2023). https://doi.org/10.1016/j.jcsr.2022.107690

    Article  Google Scholar 

  10. S.-R. Cho, T. Muttaqie, S.H. Lee, J. Paek, J.M. Sohn, Ultimate strength assessment of steel-welded hemispheres under external hydrostatic pressure. J. Mar. Sci. Appl. 19(4), 615–633 (2020). https://doi.org/10.1007/s11804-020-00178-8

    Article  Google Scholar 

  11. M. Alizadeh, F. Vahdatinejad, S. Pashangeh, Feasibility study of producing Al–5Zn–1 Mg alloy by accumulative roll bonding process and subsequent heat treatment. Eng. Fail. Anal. 143, 106927 (2023). https://doi.org/10.1016/j.engfailanal.2022.106927

    Article  CAS  Google Scholar 

  12. W.-Y. Yu, W.-J. Wu, Q.-L. Lin, X.-M. Sun, Electromigration effects during resistance brazing of Zn–Al/Al system. Int. J. Metalcast. 13(4), 937–943 (2019). https://doi.org/10.1007/s40962-019-00313-4

    Article  CAS  Google Scholar 

  13. J. Dai, H. Xie, Y. Zhou, Q. Zou, Y. Tian, Q. Yang, C. Peng, B. Jiang, J. Zhang, Effect of Q235 hot-dip galvanized and post-casting T6 heat treatment on microstructure and mechanical properties of interfacial between AZ63 and Q235 by solid–liquid compound casting. Metals 12, 1233 (2022)

    Article  CAS  Google Scholar 

  14. M.W. Hanif, A. Wasim, M. Sajid, S. Hussain, M. Jawad, M. Jahanzaib, Evaluation of microstructure and mechanical properties of squeeze overcast Al7075−Cu composite joints. China Foundry 20(1), 29–39 (2023). https://doi.org/10.1007/s41230-022-1242-8

    Article  Google Scholar 

  15. T. Greß, V. Glück Nardi, T. Mittler, S. Schmid, P. Buchberger, B. Tonn, W. Volk, Interface formation and characterization of brass/aluminum compounds fabricated through die casting and semi-continuous casting. Int. J. Metalcast. 14(2), 564–579 (2020). https://doi.org/10.1007/s40962-019-00387-0

    Article  CAS  Google Scholar 

  16. S. Acar, K.A. Guler, A preliminary study upon the applicability of the direct water cooling with the lost foam casting process. Int. J. Metalcast. 15(1), 88–97 (2021). https://doi.org/10.1007/s40962-020-00420-7

    Article  Google Scholar 

  17. E. Gavalas, P. Aslanis, N. Marinakis, S. Papaefthymiou, Optimization of cooling conditions to avoid surface cracks in Direct Chill casting of Cu–Fe–P alloy. Eng. Fail. Anal. 118, 104955 (2020). https://doi.org/10.1016/j.engfailanal.2020.104955

    Article  CAS  Google Scholar 

  18. T. Liu, Q. Wang, Y. Sui, Q. Wang, Microstructure and mechanical properties of overcast 6101–6101 wrought Al alloy joint by squeeze casting. J. Mater. Sci. Technol. 32(4), 298–304 (2016). https://doi.org/10.1016/j.jmst.2015.11.020

    Article  CAS  Google Scholar 

  19. J. Cheng, J.-H. Zhao, D. Zheng, J.-J. Shang-guan, K. He, Y. Guo, Investigation on the microstructure and mechanical properties of arc-spray-coated Q235/AZ91D by solid–liquid compound casting. Int. J. Metalcast. 14(2), 518–527 (2020). https://doi.org/10.1007/s40962-019-00380-7

    Article  CAS  Google Scholar 

  20. K.J.M. Papis, J.F. Löffler, P.J. Uggowitzer, Interface formation between liquid and solid Mg alloys—an approach to continuously metallurgic joining of magnesium parts. Mater. Sci. Eng. A 527(9), 2274–2279 (2010). https://doi.org/10.1016/j.msea.2009.11.066

    Article  CAS  Google Scholar 

  21. M. Sarvari, S. Ghaemi Khiavi, M. Divandari, H. Saghafian, Dissimilar joining of Al/Mg light metals by centrifugal compound casting process. Int. J. Metalcast. 17(2), 998–1007 (2023). https://doi.org/10.1007/s40962-022-00832-7

    Article  CAS  Google Scholar 

  22. M. Pintore, J. Wölck, T. Mittler, T. Greß, B. Tonn, W. Volk, Composite casting and characterization of Cu–Al bilayer compounds. Int. J. Metalcast. 14(1), 155–166 (2020). https://doi.org/10.1007/s40962-019-00344-x

    Article  CAS  Google Scholar 

  23. A.M. Tavakoli, B. Nami, M. Malekan, I. Khoubrou, Influences of coating type on microstructure and strength of aluminium–steel bimetal composite interface. Int. J. Metalcast. 16(2), 689–698 (2022). https://doi.org/10.1007/s40962-021-00630-7

    Article  CAS  Google Scholar 

  24. K.J.M. Papis, B. Hallstedt, J.F. Löffler, P.J. Uggowitzer, Interface formation in aluminium–aluminium compound casting. Acta Mater. 56(13), 3036–3043 (2008). https://doi.org/10.1016/j.actamat.2008.02.042

    Article  CAS  Google Scholar 

  25. A.O. Bakke, J.-O. Løland, S. Jørgensen, J. Kvinge, L. Arnberg, Y. Li, Interfacial microstructure formation in Al7SiMg/Cu compound castings. Int. J. Metalcast. 15(1), 40–48 (2021). https://doi.org/10.1007/s40962-020-00463-w

    Article  CAS  Google Scholar 

  26. H. Zhang, Y. Chen, A.A. Luo, Improved interfacial bonding in magnesium/aluminum overcasting systems by aluminum surface treatments. Metall. Mater. Trans. B 45(6), 2495–2503 (2014). https://doi.org/10.1007/s11663-014-0140-x

    Article  CAS  Google Scholar 

  27. E. Hajjari, M. Divandari, S.H. Razavi, S.M. Emami, T. Homma, S. Kamado, Dissimilar joining of Al/Mg light metals by compound casting process. J. Mater. Sci. 46(20), 6491–6499 (2011). https://doi.org/10.1007/s10853-011-5595-4

    Article  CAS  Google Scholar 

  28. M.A. Ali, M. Jahanzaib, A. Wasim, S. Hussain, N.A. Anjum, Evaluating the effects of as-casted and aged overcasting of Al–Al joints. Int. J. Adv. Manuf. Technol. 96(1), 1377–1392 (2018). https://doi.org/10.1007/s00170-018-1682-x

    Article  Google Scholar 

  29. N.A. Mufti, M.U. Islam, M.A. Ali, M.H. Raza, N. Ahmed, Analysis of annealing on the micro-porosity and ductility of squeeze-casted Al7050 alloy for the structural applications. Arch. Civ. Mech. Eng. 22(3), 107 (2022). https://doi.org/10.1007/s43452-022-00428-2

    Article  Google Scholar 

  30. T. Liu, Q. Wang, Y. Sui, Q. Wang, W. Ding, An investigation into aluminum–aluminum bimetal fabrication by squeeze casting. Mater. Des. 68, 8–17 (2015). https://doi.org/10.1016/j.matdes.2014.11.051

    Article  CAS  Google Scholar 

  31. G. Xu, A.A. Luo, Y. Chen, A.K. Sachdev, Interfacial phenomena in magnesium/aluminum bi-metallic castings. Mater. Sci. Eng. A 595, 154–158 (2014). https://doi.org/10.1016/j.msea.2013.11.093

    Article  CAS  Google Scholar 

  32. T. Liu, Q. Wang, Y. Sui, Q. Wang, W. Ding, An investigation into interface formation and mechanical properties of aluminum–copper bimetal by squeeze casting. Mater. Des. 89, 1137–1146 (2016). https://doi.org/10.1016/j.matdes.2015.10.072

    Article  CAS  Google Scholar 

  33. G. Liu, Q. Wang, T. Liu, B. Ye, H. Jiang, W. Ding, Effect of T6 heat treatment on microstructure and mechanical property of 6101/A356 bimetal fabricated by squeeze casting. Mater. Sci. Eng. A 696, 208–215 (2017). https://doi.org/10.1016/j.msea.2017.04.072

    Article  CAS  Google Scholar 

  34. C. Zhu, Z. Zhao, G. Wang, Q. Zhu, S. Wang, Effect of 2024 Al alloy insert on the grain refinement of a 2024 Al alloy prepared via insert mold casting. Metals 9, 1126 (2019)

    Article  CAS  Google Scholar 

  35. M.A. Ali, K. Ishfaq, M.H. Raza, M.U. Farooq, N.A. Mufti, C.I. Pruncu, Mechanical characterization of aged AA2026–AA2026 overcast joints fabricated by squeeze casting. Int. J. Adv. Manuf. Technol. 107(7), 3277–3297 (2020)

    Article  Google Scholar 

  36. T. Rashid, M. Qaiser Saleem, N. Ahmad Mufti, N. Asif, M.K. Ishfaq, M. Naqvi, Pressure-assisted development and characterization of Al–Fe interface for bimetallic composite castings: an experimental and statistical investigation for a low-pressure regime. Metals 11, 1687 (2021)

    Article  CAS  Google Scholar 

  37. M. Wu, J. Yang, F. Huang, L. Hua, S. Xiong, Bonding of cast iron–aluminum in bimetallic castings by high-pressure die casting process. Int. J. Adv. Manuf. Technol. 120(1), 537–549 (2022). https://doi.org/10.1007/s00170-022-08816-x

    Article  Google Scholar 

  38. M. Saito, T. Maegawa, T. Homma, Electrochemical analysis of zincate treatments for Al and Al alloy films. Electrochim. Acta 51(5), 1017–1020 (2005). https://doi.org/10.1016/j.electacta.2005.05.063

    Article  CAS  Google Scholar 

  39. M. Rübner, M. Günzl, C. Körner, R. Singer, Aluminium–aluminium compound fabrication by high pressure die casting. Mater. Sci. Eng. A 528(22–23), 7024–7029 (2011)

    Article  Google Scholar 

  40. L. Teng, Q.-D. Wang, L. Ping, J.-W. Sun, X.-L. Yin, Q.-G. Wang, Microstructure and mechanical properties of overcast aluminum joints. Trans. Nonferr. Met. Soc. China 25(4), 1064–1072 (2015)

    Article  Google Scholar 

  41. M.A. Ali, K. Ishfaq, M. Jawad, Evaluation of surface quality and mechanical properties of squeeze casted AA2026 aluminum alloy using response surface methodology. Int. J. Adv. Manuf. Technol. 103(9), 4041–4054 (2019). https://doi.org/10.1007/s00170-019-03836-6

    Article  Google Scholar 

  42. Y. Zhang, S. Ji, G. Scamans, Z. Fan, Interfacial characterisation of overcasting a cast Al–Si–Mg (A356) alloy on a wrought Al–Mg–Si (AA6060) alloy. J. Mater. Process. Technol. 243, 197–204 (2017)

    Article  CAS  Google Scholar 

  43. B. Mohammed Mossaab, A. Zerrouki, M. Nouioua, H. Guendouz, H. Abderazek, A. Bouchoucha, A new quenching method to improve the mechanical properties of metals. Adv. Mater. Process. Technol. 8(4), 4471–4482 (2022). https://doi.org/10.1080/2374068X.2022.2077526

    Article  Google Scholar 

  44. N. Hynes, D. Kumar, M.V. Prabhu, M.A. Ali, M.H. Raza, C.I. Pruncu, Investigating the parametric effects on wire electric discharge machining performance in processing AA1050-5 wt.% SiC composite with zinc-coated brass wire. J. Braz. Soc. Mech. Sci. Eng. 44(4), 1–18 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to King Saud University for funding this work through the Researchers Supporting Project number (RSPD2023R701), King Saud University, Riyadh, Saudi Arabia.

Funding

This research was funded by Researchers Supporting Project number (RSPD2023R701), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Huzaifa Raza or Ateekh Ur Rehman.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N., Ali, M.A., Raza, M.H. et al. Squeeze Overcasting of Bimetallic Composite Al2026/Al–4.5%Cu with Acidic Quenching in Aging Treatment: Characterization of Mechanical Properties and Joint Interface Microstructure. Inter Metalcast 18, 1644–1663 (2024). https://doi.org/10.1007/s40962-023-01141-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01141-3

Keywords

Navigation