Skip to main content
Log in

Oxide Formation Mechanisms in High Manganese Steel Welds

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Oxide inclusions in high-Mn steel welds were analyzed and almost all of which were found to belong to the MnO-Al2O3-SiO2 system. In this study, the inclusions were categorized based on MnS morphology into the following two types: (1) aluminosilicate with a MnS patch, or (2) aluminosilicate with a MnS shell. The most frequently detected was type 1, the formation mechanism of which was investigated using commercially available thermochemical computing software, FactSage™ (ver. 6.3). The thermodynamic calculations predicted that galaxite (MnAl2O4), tephroite (Mn2SiO4), and MnS could precipitate during solidification. However, because of the fast cooling rate in welding processes, galaxite and tephroite phases were unable to fully crystallize, but rather were supercooled as glassy phases. In order to confirm the validity of the thermodynamic calculations, the composition of the observed inclusions was compared with the MnO-SiO2-Al2O3 ternary phase diagram, resulting in remarkably good agreement. Furthermore, it was found that the type of the oxide inclusions was dependent on their location (i.e., MnS shell- and MnS patch-type oxides were detected at the dendritic core and interdendritic boundary, respectively). Both types of oxides were occasionally found in one oxide, near the interdendritic boundary. This indicates that the morphology variation originates from the redistribution of solute due to fast solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers and P.J. Jacques: Acta Mater., 2010, vol. 58, pp.2464–76.

    Article  Google Scholar 

  2. S. W. Hwanga, J. H. Ji and K.T. Park: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7267–75.

    Article  Google Scholar 

  3. A. Dumaya, J.P. Chateau, S. Allain, S. Migot and O. Bouaziz: Mater. Sci. Eng. A, 2008, vol. 483-484, pp. 184-187.

    Article  Google Scholar 

  4. G. Liu, S. Scudino, R. Li, U. Kühn, J. Sun and J. Eckert: Mech. Mater., 2011, vol. 43, pp. 556–566.

    Article  Google Scholar 

  5. K. Sato: Ph.D. Thesis, University of California, Berkeley, 2002.

  6. J. H. Park, D.J. Kim, and D. J. Min: Metall. Mater. Trans., 2012, vol. 43A, pp. 2316-24.

    Article  Google Scholar 

  7. M. Wakoh, T. Sawai, and Mizoguchi: ISIJ Int., 1996, vol. 36, pp. 1014–21.

  8. K. Oikawa, H. Ohtani, K. Ishida and T. Nishizawa: ISIJ Int., 1995, vol. 35, pp. 402-408.

    Article  Google Scholar 

  9. J.M. Dowling, J.M. Corbett, and H.W. Kerr: Metall. Trans. A, 1986, vol. 17A, pp. 1611-23.

    Article  Google Scholar 

  10. T. Furuhara, J. Yamaguchi, N. Sugita, G. Miyamoto and T. Maki: ISIJ Int., 2003, vol. 43, pp. 1630–39.

    Article  Google Scholar 

  11. T. Koseki and G. Thewlis: Mater. Sci. Tech., 2005, vol. 21, pp. 867-897.

    Article  Google Scholar 

  12. A. R. Mills, G. Thewlis, and J. A. Whiteman: Mater. Sci. Technol., 1987, vol. 3 pp. 1051–61.

    Article  Google Scholar 

  13. S. E. Kang, A. Tuling, J. R. Banerjee, W. D. Gunawardana and B. Mintz: Mater. Sci. Tech., 2011, vol. 27, pp. 95-100.

    Article  Google Scholar 

  14. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melanqon, A.D. Pelton, and S. Petersen: CALPHAD, 2002, vol. 26, pp. 189–228.

    Article  Google Scholar 

  15. J.H. Park: CALPHAD, 2011, vol. 35, pp. 455-462.

    Article  Google Scholar 

  16. J.H. Park: CALPHAD, 2007, vol. 31, pp. 428-437.

    Article  Google Scholar 

  17. J.H. Park: CALPHAD, 2007, vol. 31, pp. 149-154.

    Article  Google Scholar 

  18. J.S. Park, C. Lee and J.H. Park: Metall. Mater. Trans., 2012, vol. 43B, pp. 1550-64.

    Article  Google Scholar 

  19. H. S. Kim, H. G. Lee and K. S. OH: Metal.Mater.Int., 2000, vol. 6, pp. 305-310.

    Google Scholar 

  20. M. Wakoh, T. Sawai, S. Mizoguchi: Tetsu-to-Hagané, 1992, vol. 78, pp. 1697-1704.

    Google Scholar 

  21. W. A. Tiller, K. A. Jackson, J. W. Rutter and B. Chalmerst: Acta Metall., 1953, vol. 1,pp. 428-437.

    Article  Google Scholar 

  22. K. Oikawa, K. Ishida, and T. Nishizawa: ISIJ Int., 1997, vol. 37, No. 4, pp. 332–38.

    Article  Google Scholar 

  23. H. S. Kim, H. G. Lee, and K. S. Oh: Metall. Mater. Trans., 2001, vol. 32A, pp. 1519-25.

    Article  Google Scholar 

  24. G. E. Totten, L. Xie and K. Funatani: Handbook of Mechanical Alloy Design, 2003, CRC Press, New York.

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank to POSCO Technical Research Laboratory for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhee Lee.

Additional information

Manuscript submitted January 13, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D., Han, K., Lee, B. et al. Oxide Formation Mechanisms in High Manganese Steel Welds. Metall Mater Trans A 45, 2046–2054 (2014). https://doi.org/10.1007/s11661-013-2132-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2132-x

Keywords

Navigation