Skip to main content
Log in

Effect of TiC Reinforcement on Mechanical and Wear Properties of AZ91 Matrix Composites

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The microstructures, tribological and mechanical properties of TiC particulates reinforced AZ91 alloy have been investigated in this study. The effect of variation (3%, 6%, 9% and 12% by weight) of TiC particles (average size of 20 µm) are used to develop metal matrix composites of AZ91 Mg alloy in the current study. The composites were stirred, cast and characterized for their physical, mechanical and tribological behaviour. It was found that the addition of TiC refined the microstructure of the AZ91 composites. The porosity and density of the Magnesium (Mg) alloy composite increased with the percentage of TiC particulates. It was also found that the tensile strength initially decreased and then increased with an increase in TiC particulates in magnesium alloys. The wear rate of the TiC reinforced composites was lower than the unreinforced composites. The average coefficient of friction of the composite was also lower than the unreinforced alloy and decreased with the normal load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Data Availability

The authors confirm that this article contains all the data supporting the findings of this study.

References

  1. P. Ajay Kumar, P. Rohatgi, D. Weiss, 50 Years of foundry-produced metal matrix composites and future ppportunities. Int. J. Met. 14, 291–317 (2019). https://doi.org/10.1007/s40962-019-00375-4

    Article  CAS  Google Scholar 

  2. H.Z. Ye, X.Y. Liu, Review of recent studies in magnesium matrix composites. J. Mater. Sci. 39, 6153–6171 (2004). https://doi.org/10.1023/B:JMSC.0000043583.47148.31

    Article  CAS  Google Scholar 

  3. J. Idris, J.C. Tan, C.W. Chang, The development of advanced materials -high performance properties of composite for automotive and aerospace applications. Pertanika J. Sci. Technol. Suppl. 9, 149–158 (2001)

  4. S. Narayan, A. Rajeshkannan, Effect of titanium carbide addition on the workability behavior of powder metallurgy aluminum preforms during hot deformation. Mater. Phys. Mech. 32, 165–177 (2017). https://doi.org/10.18720/MPM.3222017-8

    Article  CAS  Google Scholar 

  5. E. Bedolla, J. Lemus-Ruiz, A. Contreras, Synthesis and characterization of Mg-AZ91/AlN composites. Mater. Des. (2012). https://doi.org/10.1016/j.matdes.2012.02.001

    Article  Google Scholar 

  6. I. Aatthisugan, A.R. Rose, D.J. Selwyn, Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite. J. Magnes. Alloy. 5, 20–25 (2017). https://doi.org/10.1016/j.jma.2016.12.004

    Article  CAS  Google Scholar 

  7. S. Banerjee, S. Poria, G. Sutradhar, P. Sahoo, Nano-indentation and corrosion characteristics of ultrasonic vibration assisted stir-cast AZ31–WC–graphite nano-composites. Int. J. Met. (2020). https://doi.org/10.1007/s40962-020-00538-8

    Article  Google Scholar 

  8. I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, Particulate reinforced metal matrix composites - a review. J. Mater. Sci. 26, 1137–1156 (1991). https://doi.org/10.1007/BF00544448

    Article  CAS  Google Scholar 

  9. B.W. Chua, L. Lu, M.O. Lai, Influence of SiC particles on mechanical properties of Mg based composite. Compos. Struct. 47, 595–601 (1999). https://doi.org/10.1016/S0263-8223(00)00031-3

    Article  Google Scholar 

  10. K.K. Deng, X.J. Wang, Y.W. Wu, X.S. Hu, K. Wu, W.M. Gan, Effect of particle size on microstructure and mechanical properties of SiCp/AZ91 magnesium matrix composite. Mater. Sci. Eng. A. 543, 158–163 (2012). https://doi.org/10.1016/j.msea.2012.02.064

    Article  CAS  Google Scholar 

  11. A. Kumar, S. Kumar, N.K. Mukhopadhyay, A. Yadav, J. Winczek, Effect of SiC reinforcement and its variation on the mechanical characteristics of AZ91 composites. Materials (Basel). 13, 4913 (2020). https://doi.org/10.3390/ma13214913

  12. A. Kumar, S. Kumar, N.K. Mukhopadhyay, A. Yadav, V. Kumar, J. Winczek, Effect of variation of SiC reinforcement on wear behaviour of AZ91 alloy composites. Materials (Basel). 14, 990 (2021). https://doi.org/10.3390/ma14040990

  13. H. Mohammadi, M. Emamy, Z. Hamnabard, The statistical analysis of tensile and compression properties of the as-cast AZ91-X%B4C composites. Int. J. Met. 14, 505–517 (2020). https://doi.org/10.1007/s40962-019-00377-2

    Article  CAS  Google Scholar 

  14. K.B. Nie, Y.C. Guo, P. Munroe, K.K. Deng, X.K. Kang, Microstructure and tensile properties of magnesium matrix nanocomposite reinforced by high mass fraction of nano-sized particles including TiC and MgZn2. J. Alloys Compd. 819, 153348 (2020). https://doi.org/10.1016/j.jallcom.2019.153348

  15. D. Dash, R. Singh, S. Samanta, R.N. Rai, Influence of TiC on microstructure, mechanical and wear properties of magnesium alloy (AZ91D) matrix composites. J. Sci. Ind. Res. (India) 79, 164–169 (2020)

    CAS  Google Scholar 

  16. M.J. Shen, F.Y. Chen, J.M. Hou, T. Ying, Microstructural analysis and mechanical properties of the AZ31B matrix cast composites containing micron sic particles. Int. J. Met. 11, 287–293 (2017). https://doi.org/10.1007/s40962-016-0054-2

    Article  Google Scholar 

  17. L. Falcon-Franco, E. Bedolla-Becerril, J. Lemus-Ruiz, J.G. Gonzalez-Rodríguez, R. Guardian, I. Rosales, Wear performance of TiC as reinforcement of a magnesium alloy matrix composite. Compos. Part B Eng. 42, 275–279 (2011). https://doi.org/10.1016/j.compositesb.2010.11.012

    Article  CAS  Google Scholar 

  18. M. Srinivasan, C. Loganathan, M. Kamaraj, Q.B. Nguyen, M. Gupta, R. Narayanasamy, Sliding wear behaviour of AZ31B magnesium alloy and nano-composite. Trans. Nonferrous Met. Soc. China (English Ed.) 22, 60–65 (2012). https://doi.org/10.1016/S1003-6326(11)61140-0

  19. Z.H. Zhu, K.B. Nie, P. Munroe, K.K. Deng, Y.C. Guo, J.G. Han, Synergistic effects of hybrid (SiC+TiC) nanoparticles and dynamic precipitates in the design of a high-strength magnesium matrix nanocomposite. Mater. Chem. Phys. 259, 124048 (2021). https://doi.org/10.1016/j.matchemphys.2020.124048

  20. A.A. Luo, Magnesium casting technology for structural applications. J. Magnes. Alloy. 1, 2–22 (2013). https://doi.org/10.1016/j.jma.2013.02.002

    Article  CAS  Google Scholar 

  21. A. Kumar, S. Kumar, N.K. Mukhopadhyay, Introduction to magnesium alloy processing technology and development of low-cost stir casting process for magnesium alloy and its composites. J. Magnes. Alloy. 6, 245–254 (2018). https://doi.org/10.1016/j.jma.2018.05.006

    Article  CAS  Google Scholar 

  22. P. Mohazzab, Archimedes’ principle revisited. J. Appl. Math. Phys. 05, 836–843 (2017). https://doi.org/10.4236/jamp.2017.54073

    Article  Google Scholar 

  23. S.F. Hassan, Effect of primary processing techniques on the microstructure and mechanical properties of nano-Y2O3 reinforced magnesium nanocomposites. Mater. Sci. Eng. A. 528, 5484–5490 (2011). https://doi.org/10.1016/j.msea.2011.03.063

    Article  CAS  Google Scholar 

  24. ASTM E8 / E8M-16a: Standard Test Methods for Tension Testing of Metallic Materials

  25. ASTM, E.-09(2018): Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature

  26. ASTM G99 - 17: Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus

  27. G. Gertsberg, E. Aghion, A.A. Kaya, D. Eliezer, Advanced production process and properties of die cast magnesium composites based on AZ91D and SiC. J. Mater. Eng. Perform. 18, 886–892 (2009). https://doi.org/10.1007/s11665-008-9306-5

    Article  CAS  Google Scholar 

  28. N. Jit, A.K. Tyagi, N. Singh, A. Singh, Comparison of porosity and density for (A384.1)1−x [(Reinforcement)p]x MMC system using Adaptive Neuro-Fuzzy Inference system. Adv. Appl. Sci. Res. 2, 240–250 (2011)

  29. P. Poddar, V.C. Srivastava, P.K. De, K.L. Sahoo, Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process. Mater. Sci. Eng. A. 460–461, 357–364 (2007). https://doi.org/10.1016/j.msea.2007.01.052

    Article  CAS  Google Scholar 

  30. M. Malaki, A. Fadaei Tehrani, B. Niroumand, M. Gupta, Wettability in metal matrix composites. Materials (Basel). 11, 1034 (2021). https://doi.org/10.3390/met11071034

  31. Q. Yuan, Z. Qiu, G. Zhou, X. Zeng, L. Luo, X.-X. Rao, Y. Ding, Y. Liu, Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide. Mater. Charact. 138, 215–228 (2018). https://doi.org/10.1016/j.matchar.2018.02.011

    Article  CAS  Google Scholar 

  32. T. Özdemir Öge, M. Öge, V. Murat Yilmaz, F. Banu Özdemir, Effect of B4C addition on the microstructure, hardness and dry-sliding-wear performance of AZ91 composites produced with hot pressing. Mater. Tehnol. 53, 433–440 (2019). https://doi.org/10.17222/mit.2018.127

    Article  CAS  Google Scholar 

  33. C. Wang, K. Deng, Y. Bai, Microstructure, and mechanical and wear properties of Grp/AZ91 magnesium matrix composites. Materials (Basel). 12, 1190 (2019). https://doi.org/10.3390/ma12071190

  34. M. Jayamathy, S.V. Kailas, K. Kumar, S. Seshan, T.S. Srivatsan, The compressive deformation and impact response of a magnesium alloy: influence of reinforcement. Mater. Sci. Eng. A. 393, 27–35 (2005). https://doi.org/10.1016/j.msea.2004.09.070

    Article  CAS  Google Scholar 

  35. S.F. Hassan, A.M. Al-Qutub, K.S. Tun, M. Gupta, Study of wear mechanisms of a novel magnesium based hybrid nanocomposite. J. Tribol. 137, 011601 (2015) https://doi.org/10.1115/1.4028078

  36. J. Archard, Wear theory and mechanisms, in Wear Control Handbook, ed. by M. Peterson, W. Winer (ASME, New York, 1980), p. 35

  37. H. Torres, M. Varga, K. Adam, M. Rodríguez Ripoll, The role of load on wear mechanisms in high temperature sliding contacts. Wear 364–365, 73–83 (2016). https://doi.org/10.1016/j.wear.2016.06.025

    Article  CAS  Google Scholar 

  38. N. Suh, The delamination theory of wear. Wear 25, 111–124 (1973). https://doi.org/10.1016/0043-1648(73)90125-7

    Article  CAS  Google Scholar 

  39. H. Chen, A. Alpas, Sliding wear map for the magnesium alloy Mg-9Al-0.9 Zn (AZ91). Wear. 246, 106–116 (2000). https://doi.org/10.1016/S0043-1648(00)00495-6

  40. C.Y. Lim, S. Lim, M. Gupta, Wear behaviour of SiCp-reinforced magnesium matrix composites. Wear 255, 629–637 (2003). https://doi.org/10.1016/S0043-1648(03)00121-2

    Article  CAS  Google Scholar 

  41. L. Prasad, N. Kumar, A. Yadav, A. Kumar, V. Kumar, J. Winczek, In situ formation of ZrB2 and its influence on wear and mechanical properties of ADC12 alloy mixed matrix composites. Materials (Basel). 14, 2141 (2021). https://doi.org/10.3390/ma14092141

  42. K.S.A. Ali, V. Mohanavel, S.A. Vendan, M. Ravichandran, A. Yadav, M. Gucwa, J. Winczek, Mechanical and microstructural characterization of friction stir welded SiC and B4C reinforced aluminium alloy AA6061 metal matrix composites. Materials (Basel). 14, 3110 (2021). https://doi.org/10.3390/ma14113110

Download references

Acknowledgements

CSIR-CSMCRI PRIS number for this manuscript is 232/2021.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

A.K., S.K., N.K.M, A.Y., D.K.S. contributed to conceptualization, methodology, data curation, writing—original draft, visualization, investigation, writing—review and editing.

Corresponding authors

Correspondence to Anil Kumar or Anshul Yadav.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent for Publication

We here give our consent to publish the paper in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, S., Mukhopadhyay, N.K. et al. Effect of TiC Reinforcement on Mechanical and Wear Properties of AZ91 Matrix Composites. Inter Metalcast 16, 2128–2143 (2022). https://doi.org/10.1007/s40962-021-00747-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00747-9

Keywords

Navigation