Skip to main content
Log in

The Effect of Micro-SiCp Content on the Tensile and Fatigue Behavior of AZ61 Magnesium Alloy Matrix Composites

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

AZ61 magnesium alloy metal matrix composites (MMCs) with different weight percentages (0, 1 and 2) of micro-silicon carbide particles (SiCp) were fabricated using stir casting method. Effects of SiCp on the microstructural distributions, mechanical and fatigue properties, and fracture surfaces have been investigated. The microstructural observations of as-cast MMCs unveil the existence of primary α-Mg phase and the presence of large amount of β-Mg17Al12 secondary phase at grain boundary. The specimens are subjected to homogenization heat treatment at 410 °C for 24 h; the β-Mg17Al12 phases are significantly dissolved in the matrix grain boundaries which enhance the ductility and decrease the hardness compared with the as-cast materials. The addition of SiCp reinforcement led to improved yield strength (YS) and ultimate tensile strength (UTS) of AZ61/SiCp composite compared to the unreinforced alloy. The maximum values of YS and UTS have been attained at AZ61/1wt%SiCp composites. The enhancement of YS and UTS was due to the presence of a uniformly distributed reinforced SiCp, which depends on grain refinement of the matrix and strong interfacial bonding between the matrix and reinforcement. In the case of fatigue test results, the addition of SiCp reduced the fatigue life and strength of AZ61 alloy composite. However, addition of 1wt%SiCp showed good mechanical and fatigue properties compared to pure AZ61 magnesium alloy and AZ61/2wt%SiCp composite. Furthermore, the effects of addition of SiCp on the mechanical and fatigue properties of the composite were confirmed by using the scanning electron microscope observation of fracture surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. J.W. Kaczmar, K. Pietrzak, W. Wlosiński, Production and application of metal matrix composite materials. J. Mater. Process. Technol. 106(1–3), 58–67 (2000). https://doi.org/10.1016/S0924-0136(00)00639-7

    Article  Google Scholar 

  2. M. Gupta, Q.B. Nguyen, A.M. Hamouda, K.S. Tun, N.J. Minh, Investigation on the mechanical properties of Mg-Al alloys (AZ41 and AZ51) and its composites. Metals (Basel) 2(3), 313–328 (2012). https://doi.org/10.3390/met2030313

    Article  CAS  Google Scholar 

  3. K.B. Nie, K.K. Deng, X.J. Wang, T. Wang, K. Wu, Influence of SiC nanoparticles addition on the microstructural evolution and mechanical properties of AZ91 alloy during isothermal multidirectional forging. Mater. Charact. 124, 14–24 (2017). https://doi.org/10.1016/j.matchar.2016.12.006

    Article  CAS  Google Scholar 

  4. G. Faraji, O. Dastani, S.A.A.A. Mousavi, Effect of process parameters on microstructure and micro-hardness of AZ91/Al2O3surface composite produced by FSP. J. Mater. Eng. Perform. 20(9), 1583–1590 (2011). https://doi.org/10.1007/s11665-010-9812-0

    Article  CAS  Google Scholar 

  5. P. Asadi, M.K. Besharati Givi, G. Faraji, Producing ultrafine-grained AZ91 from as-cast AZ91 by FSP. Mater. Manuf. Process. 25(11), 1219–1226 (2010). https://doi.org/10.1080/10426911003636936

    Article  CAS  Google Scholar 

  6. Q.B. Nguyen et al., Effect of addition of nano-al2o3 and copper particulates and heat treatment on the tensile response of az61 magnesium alloy. J. Eng. Mater. Technol. Trans. ASME 135(3), 1–7 (2013). https://doi.org/10.1115/1.4023769

    Article  CAS  Google Scholar 

  7. A. Luo, Magnesium metal matrix composites liquid-mixing and casting) melt stirring. Metall. Mater. Trans. A 26(September), 2445–2455 (1995). https://doi.org/10.1007/BF02671259

    Article  Google Scholar 

  8. S. Zhang et al., Simultaneously improving the strength and ductility of extruded bimodal size SiCp/AZ61 composites: Synergistic effect of micron/nano SiCp and submicron Mg17Al12 precipitates. Mater. Sci. Eng. A 743(2018), 207–216 (2018). https://doi.org/10.1016/j.msea.2018.11.023

    Article  CAS  Google Scholar 

  9. X.J. Wang et al., Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing. Mater. Des. 57, 638–645 (2014). https://doi.org/10.1016/j.matdes.2014.01.022

    Article  CAS  Google Scholar 

  10. B.N. Sahoo, S.K. Panigrahi, Effect of in-situ (TiC-TiB2) reinforcement on aging and mechanical behavior of AZ91 magnesium matrix composite. Mater. Charact. 139(January), 221–232 (2018). https://doi.org/10.1016/j.matchar.2018.03.002

    Article  CAS  Google Scholar 

  11. A. Matin, F.F. Saniee, H.R. Abedi, Microstructure and mechanical properties of Mg/SiC and AZ80/SiC nano-composites fabricated through stir casting method. Mater. Sci. Eng. A 625, 81–88 (2015). https://doi.org/10.1016/j.msea.2014.11.050

    Article  CAS  Google Scholar 

  12. S.J. Huang, Y.M. Hwang, Y.S. Huang, C.C. Huang, Mechanical properties enhancement of particle reinforced magnesium matrix composites used for hot extruded tubes. Acta Phys. Pol. A 127(4), 1271–1273 (2015). https://doi.org/10.12693/APhysPolA.127.1271

    Article  CAS  Google Scholar 

  13. M.K.K. Oo, P.S. Ling, M. Gupta, Characteristics of Mg-based composites synthesized using a novel mechanical disintegration and deposition technique. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 31(7), 1873–1881 (2000). https://doi.org/10.1007/s11661-006-0241-5

    Article  Google Scholar 

  14. B.V. Manoj Kumar, B. Basu, V.S.R. Murthy, M. Gupta, The role of tribochemistry on fretting wear of Mg-SiC particulate composites. Compos. A Appl. Sci. Manuf. 36(1), 13–23 (2005). https://doi.org/10.1016/j.compositesa.2004.06.032

    Article  CAS  Google Scholar 

  15. B. Venkatesh, P. Sandeep, M.V.A. Ramakrishna, Synthesis and mechanical characterization of magnesium reinforced with SiC composites. Mater. Today Proc. 19, 792–797 (2019). https://doi.org/10.1016/j.matpr.2019.08.133

    Article  CAS  Google Scholar 

  16. J. Szala, A fatigue life calculation method for structural elements made of D16CzATW aluminium alloy. Polish Maritime Res. 17(66), 8–17 (2010)

    Google Scholar 

  17. L. Wagner, M. Hilpert, J. Wendt, B. Küster, On methods for improving the fatigue performance of the wrought magnesium alloys AZ31 and AZ80. Mater. Sci. Forum 419–422, 93–102 (2009). https://doi.org/10.4028/www.scientific.net/msf.419-422.93

    Article  Google Scholar 

  18. H.K. Kim, Y.I. Lee, C.S. Chung, Fatigue properties of a fine-grained magnesium alloy produced by equal channel angular pressing. Scr. Mater. 52(6), 473–477 (2005). https://doi.org/10.1016/j.scriptamat.2004.11.007

    Article  CAS  Google Scholar 

  19. T.S. Shih, W.S. Liu, Y.J. Chen, Fatigue of as-extruded AZ61A magnesium alloy. Mater. Sci. Eng. A 325(1–2), 152–162 (2002). https://doi.org/10.1016/S0921-5093(01)01411-3

    Article  Google Scholar 

  20. U. Noster, I. Altenberger, B. Scholtes, Isothermal fatigue of magnesium wrought alloy AZ31. Magnes. Alloy Their Appl. (2006). https://doi.org/10.1002/3527607552.ch49

    Article  Google Scholar 

  21. V. Sivananth, S. Vijayarangan, N. Rajamanickam, Evaluation of fatigue and impact behavior of titanium carbide reinforced metal matrix composites. Mater. Sci. Eng. A 597, 304–313 (2014). https://doi.org/10.1016/j.msea.2014.01.004

    Article  CAS  Google Scholar 

  22. S. Fintová, L. Kunz, Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation. J. Mech. Behav. Biomed. Mater. 42, 219–228 (2015). https://doi.org/10.1016/j.jmbbm.2014.11.019

    Article  CAS  Google Scholar 

  23. A. Němcová, P. Skeldon, G.E. Thompson, S. Morse, J. Čížek, B. Pacal, Influence of plasma electrolytic oxidation on fatigue performance of AZ61 magnesium alloy. Corros. Sci. 82, 58–66 (2014). https://doi.org/10.1016/j.corsci.2013.12.019

    Article  CAS  Google Scholar 

  24. A.R. Vaidya, J.J. Lewandowski, Effects of SiCp size and volume fraction on the high cycle fatigue behavior of AZ91D magnesium alloy composites. Mater. Sci. Eng. A 220(1–2), 85–92 (1996). https://doi.org/10.1016/S0921-5093(96)10464-0

    Article  Google Scholar 

  25. J. Hashim, L. Looney, M.S.J. Hashmi, Metal matrix composites: production by the stir casting method. J. Mater. Process. Technol. 92–93, 1–7 (1999). https://doi.org/10.1016/S0924-0136(99)00118-1

    Article  Google Scholar 

  26. S.J. Huang, V. Rajagopal, A.N. Ali, Influence of the ECAP and HEBM processes and the addition of Ni catalyst on the hydrogen storage properties of AZ31-x Ni (x=0,2,4) alloy. Int. J. Hydrogen Energy 44(2), 1047–1058 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.005

    Article  CAS  Google Scholar 

  27. S.J. Huang, A.N. Ali, Effects of heat treatment on the microstructure and microplastic deformation behavior of SiC particles reinforced AZ61 magnesium metal matrix composite. Mater. Sci. Eng. A 711(2017), 670–682 (2018). https://doi.org/10.1016/j.msea.2017.11.020

    Article  CAS  Google Scholar 

  28. H. Lin, M. Yang, H. Tang, F. Pan, Effect of minor Sc on the microstructure and mechanical properties of AZ91 magnesium alloy. Prog. Nat. Sci. Mater. Int. 28(1), 66–73 (2018). https://doi.org/10.1016/j.pnsc.2018.01.006

    Article  CAS  Google Scholar 

  29. S.J. Huang, A. Abbas, Effects of tungsten disulfide on microstructure and mechanical properties of AZ91 magnesium alloy manufactured by stir casting. J. Alloys Compd. 817, 153321 (2020). https://doi.org/10.1016/j.jallcom.2019.153321

    Article  CAS  Google Scholar 

  30. K.R. Gopi, H.S. Nayaka, S. Sahu, Investigation of microstructure and mechanical properties of ECAP-processed AM series magnesium alloy. J. Mater. Eng. Perform. 25(9), 3737–3745 (2016). https://doi.org/10.1007/s11665-016-2229-7

    Article  CAS  Google Scholar 

  31. A. Viswanath, H. Dieringa, K.K. Ajith Kumar, U.T.S. Pillai, B.C. Pai, Investigation on mechanical properties and creep behavior of stir cast AZ91-SiCp composites. J. Magn. Alloys 3(1), 16–22 (2015). https://doi.org/10.1016/j.jma.2015.01.001

    Article  CAS  Google Scholar 

  32. Y. Huang, J. Gu, S. You, K.U. Kainer, N. Hort, Influences of SiC particle additions on the grain refinement of Mg–Zn alloys. Miner. Met. Mater. Ser. (2019). https://doi.org/10.1007/978-3-030-05789-3_49

    Article  Google Scholar 

  33. M.C. Gui, J.M. Han, P.Y. Li, Microstructure and mechanical properties of Mg-Al9Zn/SiCp composite produced by vacuum stir casting process. Mater. Sci. Technol. 20(6), 765–771 (2004). https://doi.org/10.1179/026708304225017319

    Article  CAS  Google Scholar 

  34. A. Luo, Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites. Metall. Mater. Trans. A 26(9), 2445–2455 (1995). https://doi.org/10.1007/BF02671259

    Article  Google Scholar 

  35. S. Aravindan, P.V. Rao, K. Ponappa, Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process. J. Magn. Alloys 3(1), 52–62 (2015). https://doi.org/10.1016/j.jma.2014.12.008

    Article  CAS  Google Scholar 

  36. J. Lan, Y. Yang, X. Li, Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method. Mater. Sci. Eng. A 386(1–2), 284–290 (2004). https://doi.org/10.1016/j.msea.2004.07.024

    Article  CAS  Google Scholar 

  37. M. Rashad, F. Pan, W. Guo, H. Lin, M. Asif, M. Irfan, Effect of alumina and silicon carbide hybrid reinforcements on tensile, compressive and microhardness behavior of Mg-3Al-1Zn alloy. Mater. Charact. (2015). https://doi.org/10.1016/j.matchar.2015.06.033

    Article  Google Scholar 

  38. M.J. Shen, X.J. Wang, T. Ying, K. Wu, W.J. Song, Characteristics and mechanical properties of magnesium matrix composites reinforced with micron/submicron/nano SiC particles. J. Alloys Compd. 686, 831–840 (2016). https://doi.org/10.1016/j.jallcom.2016.06.232

    Article  CAS  Google Scholar 

  39. K. Liu, Q.F. Wang, W.B. Du, S.B. Li, Z.H. Wang, Failure mechanism of as-cast Mg-6Zn-2Er alloy during tensile test at room temperature. Trans. Nonferrous Met. Soc. China English Ed. 23(11), 3193–3199 (2013). https://doi.org/10.1016/S1003-6326(13)62852-6

    Article  CAS  Google Scholar 

  40. Y. Uematsu, K. Tokaji, M. Kawamura, Fatigue behaviour of SiC-particulate-reinforced aluminium alloy composites with different particle sizes at elevated temperatures. Compos. Sci. Technol. 68(13), 2785–2791 (2008). https://doi.org/10.1016/j.compscitech.2008.06.005

    Article  CAS  Google Scholar 

  41. H.A. Hassan, J.J. Lewandowski, Effects of particulate volume fraction on cyclic stress response and fatigue life of AZ91D magnesium alloy metal matrix composites. Mater. Sci. Eng. A 600, 188–194 (2014). https://doi.org/10.1016/j.msea.2014.02.021

    Article  CAS  Google Scholar 

  42. I. Uygur, M.K. Külekci, Low cycle fatigue properties of 2124/SiCp Al-alloy composites. Turk. J. Eng. Environ. Sci. 26(3), 265–274 (2002)

    Google Scholar 

  43. W. Li, Z.H. Chen, D. Chen, J. Teng, C. Fan, Low-cycle fatigue behavior of SiCp/Al-Si composites produced by spray deposition. Mater. Sci. Eng. A 527(29–30), 7631–7637 (2010). https://doi.org/10.1016/j.msea.2010.08.017

    Article  CAS  Google Scholar 

  44. A. Němcová, J. Zapletal, M. Juliš, T. Podrábský, Cyclic fatigue resistance of Az91 magnesium alloy. Mater. Eng. 16(4), 5 (2009)

    Google Scholar 

  45. D.P. Myriounis, E.Z. Kordatos, S.T. Hasan, T.E. Matikas, Crack-tip stress field and fatigue crack growth monitoring using infrared lock-in thermography in a359/sicp composites. Strain 47(SUPPL. 1), 619–627 (2011). https://doi.org/10.1111/j.1475-1305.2009.00665.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the financial support to this research from the Ministry of Science and Technology of Republic of China (Project No. MOST-105-2221-E-011-058-MY2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murugan Subramani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, SJ., Subramani, M., Ali, A.N. et al. The Effect of Micro-SiCp Content on the Tensile and Fatigue Behavior of AZ61 Magnesium Alloy Matrix Composites. Inter Metalcast 15, 780–793 (2021). https://doi.org/10.1007/s40962-020-00508-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00508-0

Keywords

Navigation