Skip to main content
Log in

Modeling of Microporosity Size Distribution in Aluminum Alloy A356

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Porosity is one of the most common defects to degrade the mechanical properties of aluminum alloys. Prediction of pore size, therefore, is critical to optimize the quality of castings. Moreover, to the design engineer, knowledge of the inherent pore population in a casting is essential to avoid potential fatigue failure of the component. In this work, the size distribution of the porosity was modeled based on the assumptions that the hydrogen pores are nucleated heterogeneously and that the nucleation site distribution is a Gaussian function of hydrogen supersaturation in the melt. The pore growth is simulated as a hydrogen-diffusion-controlled process, which is driven by the hydrogen concentration gradient at the pore liquid interface. Directionally solidified A356 (Al-7Si-0.3Mg) alloy castings were used to evaluate the predictive capability of the proposed model. The cast pore volume fraction and size distributions were measured using X-ray microtomography (XMT). Comparison of the experimental and simulation results showed that good agreement could be obtained in terms of both porosity fraction and size distribution. The model can effectively evaluate the effect of hydrogen content, heterogeneous pore nucleation population, cooling conditions, and degassing time on microporosity formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. SCANCO MEDICAL MICRO-CT is a trademark of SCANCO USA, Inc., Southeastern, PA.

  2. AMIRA is a trademark of Visage Imaging GmbH, Berlin, Germany.

References

  1. A.A. Dabaye, R.X. Xu, B.P. Du, and T.H. Topper: Int. J. Fatigue, 1996, vol. 18 (2), pp. 95–104.

    Article  Google Scholar 

  2. X. Zhu, J.Z. Yi, J.W. Jones, and J.E. Allison: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1111–23.

    Article  CAS  Google Scholar 

  3. O. Lashkari, L. Yao, S. Cockcroft, and D. Maijer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 991–99.

    Article  CAS  Google Scholar 

  4. G. Nicoletto, G. Anzelotti, and R. Konecna: Procedia Eng., 2010, vol. 2, pp. 547–54.

    Article  CAS  Google Scholar 

  5. H.R. Ammar, A.M. Samuel, and F.H. Samuel: Mater. Sci. Eng. A, 2008, vol. 473, pp. 65–75.

    Article  Google Scholar 

  6. Q.G. Wang, D. Apelian, and D.A. Lados: J. Light Met., 2001, vol. 1, pp. 73–84.

    Article  CAS  Google Scholar 

  7. K. Gall, N. Yang, M. Horstemeyer, D.L. McDowell, and J. Fan: Fatigue Fract. Eng. Mater. Struct., 2000, vol. 23, pp. 159–72.

    Article  CAS  Google Scholar 

  8. W. Ludwig, J.Y. Buffière, S. Savelli, and P. Cloetens: Acta Mater., 2003, vol. 51, pp. 585–98.

    Article  CAS  Google Scholar 

  9. P. Li, P.D. Lee, D.M. Maijer, and T.C. Lindley: Acta Mater., 2009, vol. 57, pp. 3539–48.

    Article  CAS  Google Scholar 

  10. P.D. Lee, A. Chirazi, and D. See: J. Light Met., 2001, vol. 1, pp. 15–30.

    Article  Google Scholar 

  11. P.D. Lee and J.D. Hunt: Acta Mater., 1997, vol. 45, pp. 4155–69.

    Article  CAS  Google Scholar 

  12. P.D. Lee and J.D. Hunt: Modeling of Casting, Welding, and Advanced Solidification Processes VII, Warrendale, PA, 1995, pp. 585–92.

  13. R.C. Atwood and P.D. Lee: Modeling of Casting Welding and Advanced Solidification Processes IX, Aachen, Germany, 2000, pp. 2–9.

  14. L. Yao, E. Khajeh, S.L. Cockcroft, and D.M. Maijer: Modeling of Casting, Welding and Advanced Solidification Processes XII, Vancouver, Canada, 2009, pp. 385–92.

  15. S. Thompson, S.L. Cockcroft, and M.A. Wells: Mater. Sci. Technol., 2004, vol. 20, pp. 194–200.

    Article  CAS  Google Scholar 

  16. M. Massoud: Engineering Thermofluids: Thermodynamics, Fluid Mechanics, and Heat Transfer, Springer, New York, NY, 2005, pp. 631–39.

    Google Scholar 

  17. J. Pryde and C.G. Titcomb: J. Phys. C: Solid State Phys., 1972, vol. 5, pp. 1293–1300.

    Article  CAS  Google Scholar 

  18. P. Anyalebechi: Scripta Metall. Mater., 1995, pp. 1209–16.

  19. H.B. Aaron, D. Fainstein, and G. Kotler: J. Appl. Phys., 1970, vol. 41, pp. 4404–10.

    Article  Google Scholar 

  20. K.D. Carlson, Zhiping Lin, and C. Beckermann: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 541–55.

  21. S.V. Akhonin, N.P. Trigub, V.N. Zamkov, and S.L. Semiatin: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 447–54.

    Article  CAS  Google Scholar 

  22. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1986, pp. 165–66.

    Google Scholar 

  23. K. Tynelius, J.F. Major, and D. Apelian: AFS Trans., 1994, vol. 101, pp. 401–13.

    Google Scholar 

  24. R. Fuoco, H. Goldenstein, and J.E. Gruzleski: AFS Trans., 1994, vol. 102, pp. 297–306.

    CAS  Google Scholar 

  25. D. Emadi, J.E. Gruzleski, and M. Pekguleryuz: AFS Trans., 1996, vol. 104, pp. 763–68.

    CAS  Google Scholar 

  26. B. Sun, W. Ding, D. Shu, and Y. Zhao: J. Cent. South Univ. Technol., 2004, vol. 11, pp. 134–41.

    Article  CAS  Google Scholar 

  27. V.S. Warke, S. Shankar, and M.M. Makhlouf: J. Mater. Proc. Technol., 2005, vol. 168, pp. 119–26.

    Article  CAS  Google Scholar 

  28. P.L. Schaffer and A.K. Dahle: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 481–85.

    Article  CAS  Google Scholar 

  29. J.B. Jordon, M.F. Horstemeyer, N. Yang, J.F. Major, K.A. Gall, J. Fan, and D.L. McDowell: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 356–63.

    Article  CAS  Google Scholar 

  30. J.F. Major: AFS Trans., 1997, vol. 105, pp. 901–06.

    CAS  Google Scholar 

  31. D. Emadi, J.E. Gruzleski, and J.M. Toguri: Metall. Mater. Trans. B, 1993, vol. 24B, pp. 1055–63.

    CAS  Google Scholar 

  32. Q.T. Fang and D.A. Granger: AFS Trans., 1989, vol. 97, pp. 989–1000.

    Google Scholar 

  33. J. Campbell and M. Tiryakioglu: Mater. Sci. Technol., 2010, vol. 26, pp. 262–67.

    Article  CAS  Google Scholar 

  34. C.M. Dinnis, M.O. Otte, A.K. Dahle, and J.A. Taylor: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3531–41.

    Article  CAS  Google Scholar 

  35. R.C. Atwood, S. Sridhar, W. Zhang, and P.D. Lee: Acta Mater., 2000, vol. 48 (2), pp. 405–17.

    Article  CAS  Google Scholar 

  36. J.D. Zhu, S.L. Cockcroft, and D.M. Maijer: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1075–85.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Yao.

Additional information

Manuscript submitted March 14, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, L., Cockcroft, S., Zhu, J. et al. Modeling of Microporosity Size Distribution in Aluminum Alloy A356. Metall Mater Trans A 42, 4137–4148 (2011). https://doi.org/10.1007/s11661-011-0811-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0811-z

Keywords

Navigation