Skip to main content

Advertisement

Log in

Intelligent Process Modeling and Optimization of Porosity Formation in High-Pressure Die Casting

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this paper, are presented design and implementation issues of predictive models developed for improving the quality of aluminum die castings by minimizing scrap due to porosity. A predictive model for porosity of casting parts is created using fuzzy systems optimized by genetic algorithm and simulated annealing. High-pressure die casting is a complex process that is affected by a large number of process parameters with influence on casting defects such as porosity. In this study, porosity of casting parts is expressed as a function of counter-pressure, first phase velocity, first phase length, second phase velocity, first cooling period, and second cooling period. It was found that the developed GA- and SA-based fuzzy systems have great predictive capability of porosity in die castings. The second objective of this work was to obtain a group of optimal process parameters leading to minimum porosity in high-pressure die casting using genetic algorithm and simulated annealing as optimal solution finders. The optimal parameters were validated experimentally, and the castings with minimum percentage of porosity were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. G.P. Syrcos, Die casting process optimization using Taguchi methods. J. Mater. Process. Technol. 135(1), 68–74 (2003)

    Article  CAS  Google Scholar 

  2. V.D. Tsoukalas, S.A. Mavrommatis, N.G. Orfanoudakis, A.K. Baldoukas, A study of porosity formation in pressure die casting using the Taguchi approach. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 218(1), 77–86 (2004)

    Article  Google Scholar 

  3. K.S. Anastasiou, Optimization of the aluminium die casting process based on the Taguchi method. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 216(7), 969–977 (2002)

    Article  Google Scholar 

  4. U.A. Dabade, R.C. Bhedasgaonkar, Casting defect analysis using design of experiments (DOE) and computer aided casting simulation technique. Proc. CIRP 7, 616–621 (2013)

    Article  Google Scholar 

  5. J.K. Kittur, M. Choudhari, M. Parappagoudar, Modeling and multi-response optimization of pressure die casting process using response surface methodology. Int. J. Adv. Manuf. Technol. 77(1–4), 211–224 (2015)

    Article  Google Scholar 

  6. Y. Wang, S. Wu, L. Niu, Zhang J. Xue, W. Xiao, Optimization of low-pressure die casting process parameters for reduction of shrinkage porosity in ZL205A alloy casting using Taguchi method. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 228(11), 1508–1514 (2014)

    Article  CAS  Google Scholar 

  7. M. Ding, J. Song, L. Honghui, Effect of pouring temperature on typical structure of thin-walled ZL105A alloy casting. Mater. Manuf. Process. 29(7), 853–863 (2014)

    Article  CAS  Google Scholar 

  8. T.D. Yourui, D. Shuyong, Y. Xujing, Reliability modeling and optimization of die-casting existing epistemic uncertainty. Int. J. Interact. Des. Manuf. 10(1), 51–57 (2016)

    Article  Google Scholar 

  9. S.M. Hosseini, Z. Utlu, Design optimization of clutch housing mold by fluid flow and solidification simulation. J. Mech. Sci. Technol. 30(6), 2731–2742 (2016)

    Article  Google Scholar 

  10. X. Zhi, Y. Han, X. Yuan, Casting process optimization for the impellor of 200ZJA slurry pump. Int. J. Adv. Manuf. Technol. 77(9), 1703–1710 (2015)

    Article  Google Scholar 

  11. A.A. Keste, S.H. Gawande, C. Sarkar, Design optimization of precision casting for residual stress reduction. J. Comput. Des. Eng. 3(2), 140–150 (2016)

    Google Scholar 

  12. P.K.D.V. Yarlagadda, E.C.W. Chiang, A neural network system for the prediction of process parameters in pressure die casting. J. Mater. Process. Technol. 89–90, 583–590 (1999)

    Article  Google Scholar 

  13. A. Shafyei, S.H.M. Anijdan, A. Bahrami, Prediction of porosity percent in Al–Si casting alloys using ANN. Mater. Sci. Eng. A 431(1–2), 206–210 (2006)

    Article  Google Scholar 

  14. J.K. Rai, A.M. Lajimi, P. Xirouchakis, An intelligent system for predicting HPDC process variables in interactive environment. J. Mater. Process. Technol. 203(1–3), 72–79 (2008)

    Article  CAS  Google Scholar 

  15. J. Zheng, Q. Wang, P. Zhao, C. Wu, Optimization of high-pressure die-casting process parameters using artificial neural network. Int. J. Adv. Manuf. Technol. 44(7), 667–674 (2009)

    Article  Google Scholar 

  16. V.D. Tsoukalas, An adaptive neuro-fuzzy inference system (ANFIS) model for high pressure die casting. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 225(12), 2276–2286 (2011)

    Article  CAS  Google Scholar 

  17. A. Krimpenis, P.G. Benardos, G.C. Vosniakos, A. Koukouvitaki, Simulation-based selection of optimum pressure die-casting process parameters using neural nets and genetic algorithms. Int. J. Adv. Manuf. Technol. 27(5), 509–517 (2006)

    Article  Google Scholar 

  18. L. Zhang, R. Wang, An intelligent system for low-pressure die-cast process parameters optimization. Int. J. Adv. Manuf. Technol. 65(1), 517–524 (2013)

    Article  Google Scholar 

  19. S.H.M. Anijdan, A. Bahrami, H.R.M. Hosseini, A. Shafyei, Using genetic algorithm and artificial neural network analyses to design an Al-Si casting alloy of minimum porosity. Mater. Des. 27(7), 605–609 (2006)

    Article  CAS  Google Scholar 

  20. V.D. Tsoukalas, Optimization of porosity formation in AlSi9Cu3 pressure die castings using genetic algorithm analysis. Mater. Des. 29(10), 2027–2033 (2008)

    Article  CAS  Google Scholar 

  21. G.C.M. Patel, P. Krishna, M.B. Parappagoudar, Modelling and multi-objective optimisation of squeeze casting process using regression analysis and genetic algorithm. Aust. J. Mech. Eng. 14(3), 182–198 (2016)

    Article  Google Scholar 

  22. K.T. Chiang, N.M. Liu, C.C. Chou, Machining parameters optimization on the die casting process of magnesium alloy using the grey-based fuzzy algorithm. Int. J. Adv. Manuf. Technol. 38(3), 229–237 (2008)

    Article  Google Scholar 

  23. R.V. Rao, V.D. Kalyankar, G. Waghmare, Parameters optimization of selected casting processes using teaching–learning-based optimization algorithm. Appl. Math. Model. 38(23), 5592–5608 (2014)

    Article  Google Scholar 

  24. D.B. Miracle, Metal matrix composites—from science to technological significance. Compos. Sci. Technol. 65(15–16), 2526–2540 (2005)

    Article  CAS  Google Scholar 

  25. L.A. Zadeh, Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4(2), 103–111 (1996)

    Article  Google Scholar 

  26. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djordje Cica.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cica, D., Kramar, D. Intelligent Process Modeling and Optimization of Porosity Formation in High-Pressure Die Casting. Inter Metalcast 12, 814–824 (2018). https://doi.org/10.1007/s40962-018-0213-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-018-0213-8

Keywords

Navigation