Skip to main content
Log in

A micro–macro method for evaluating progressive and direct tensile fractures in brittle rocks

  • Technical Note
  • Published:
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Aims and scope Submit manuscript

Abstract

A micro–macro method for evaluating the behaviors of direct tensile fractures during progressive loadings in brittle rocks is proposed in this study. The method consists of the suggested equation of the stress intensity factor of the mode-I crack that considers crack initiation, growth, and coalescence subjected to triaxial tensile loadings and the expression of axial strain relating to the extended length of the wing crack. The direct tensile correlation of stress and strain for depicting the complete initial elasticity, strain hardening, strain softening, and fracture stages is also studied. The reasonability of the presented method is proved by contrasting published results of experiment. Furthermore, the sensitivities of the density, inclination angle and size of the initial crack on the axial stress–strain curve, axial stress–crack length curve, tensile strength, crack initiation stress, and elastic modulus are determined. The tensile peak stress, tensile stress at crack initiation, and tensile elastic modulus descend with the increment of the inclination angle or size of the initial crack. The tensile peak stress initially descends and then remains constant, finally reaching a critical value with the increment of the density of the initial crack. The tensile elastic modulus descends with the increment of the density of the initial crack. The calculated results have a great significance for the safety evaluation of surrounding rocks in deep-buried underground engineering.

Article highlights

  • A micro–macro method evaluating the direct tensile fracture of brittle rocks is proposed.

  • The complete stress–strain constitutive relationship of brittle rocks under tensile loadings is studied.

  • The effect of microcrack geometry on the properties of direct tensile fracture is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Abbreviations

a :

Size of the initial crack, i.e., the three-dimensional penny-shaped crack radius

D o :

Damage of the initial microcrack

E :

Initial elastic modulus

F V :

Wedge force

K I :

Mode-I crack stress intensity factor

K IC :

Mode-I fracture toughness

l :

Length of wing crack extension

l coa :

Length of crack coalescence between the adjacent wing cracks

m :

Material constant

N V :

Initial microcrack number per unit volume (i.e., crack density)

r :

Averagely occupied radius of the initial crack per unit volume

S :

Averagely occupied area of the initial crack plane per unit volume

α :

Sine value of initial crack inclination angle φ

β :

Material constant

φ :

Initial crack inclination angle

σ 1 :

Maximal principal tensile stress

σ 3 :

Minimal principal tensile stress

σ 1ci :

Crack initiation stress

σ i 1 :

Internal stress between the tips of the adjacent wing cracks

σ n :

Normal stress at the plane of initial crack

τ :

Shear stress at the plane of initial crack

ε 1 :

Axial strain

ε 1ci :

Axial strain at crack initiation

ε 1f :

Axial failure strain

ε o :

Material constant

References

  • Aliha M, Heidari-Rarani M, Shokrieh M, Ayatollahi M (2012) Experimental determination of tensile strength and KIcof polymer concretes using semi-circular bend (SCB) specimens. Struct Eng Mech 43(6):823–833

    Article  Google Scholar 

  • Aliha MRM, Ebneabbasi P, Karimi H, Nikbakht E (2021) A novel test device for the direct measurement of tensile strength of rock using ring shape sample. Int J Rock Mech Min Sci 139:104649

    Article  Google Scholar 

  • Ashby MF, Sammis CG (1990) The damage mechanics of brittle solids in compression. Pure Appl Geophys 133(3):489–521

    Article  Google Scholar 

  • Ban YX, Fu X, Xie Q, Duan J (2020) Time-sensitivity mechanism of rock stress memory properties under tensile stress. J Rock Mech Geotech Eng 12(3):528–540

    Article  Google Scholar 

  • Brantut N, Baud P, Heap MJ, Meredith PG (2012) Micromechanics of brittle creep in rocks. J Geophys Res 117:B08412

    Google Scholar 

  • Budiansky B, O’Connel RJ (1976) Elastic moduli of a cracked solid. Int J Solids Struct 12:81–97

    Article  MATH  Google Scholar 

  • Cai M, Kaiser PK, Tasaka Y, Maejima T, Morioka H, Minami M (2004) Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int J Rock Mech Min Sci 41(5):833–847

    Article  Google Scholar 

  • Carmona S, Aguado A (2012) New model for the indirect determination of the tensile stress–strain curve of concrete by means of the Brazilian test. Mater Struct 45(10):1473–1485

    Article  Google Scholar 

  • Čebašek TM, Frühwirt T (2018) Investigation of creep behaviours of gypsum specimens with flaws under different uniaxial loads. J Rock Mech Geotech Eng 10(1):151–163

    Article  Google Scholar 

  • Cen D, Huang D, Song Y, Jiang Q (2020) Direct tensile behavior of limestone and sandstone with bedding planes at different strain rates. Rock Mech Rock Eng 53:2643–2651

    Article  Google Scholar 

  • Chen ZH, Tang CA, Huang RQ (1997) A double rock sample model for rockbursts. Int J Rock Mech Min Sci 34(6):991–1000

    Article  Google Scholar 

  • Christe P, Turberg P, Labiouse V, Meuli R, Parriaux A (2011) An X-ray computed tomography-based index to characterize the quality of cataclastic carbonate rock samples. Eng Geol 117(3–4):180–188

    Article  Google Scholar 

  • Cui C, Gratchev I (2020) Effects of pre-existing cracks and infillings on strength of natural rocks–Cases of sandstone, argillite and basalt. J Rock Mech Geotech Eng 12(6):1333–1338

    Article  Google Scholar 

  • Feng G, Wang XC, Kang Y, Luo SG, Hu YQ (2019) Effects of temperature on the relationship between mode-i fracture toughness and tensile strength of rock. Appl Sci 9:1326

    Article  Google Scholar 

  • Gerd M (2019) Application of the cluster analysis and time statistic of acoustic emission events from tensile test of a cylindrical rock salt specimen. Eng Fract Mech 210:84–94

    Article  Google Scholar 

  • Göğüş ÖD (2020) 3D discrete analysis of damage evolution of hard rock under tension. Arab J Geosci 13:661

    Article  Google Scholar 

  • Guo YB, Gao GF, Jing L, Shim VPW (2019) Quasi-static and dynamic splitting of high-strength concretes-tensile stress-strain response and effects of strain rate. Int J Impact Eng 125:188–211

    Article  Google Scholar 

  • Hawkes I, Mellor M, Gariepy S (1973) Deformation of rocks under uniaxial tension. Int J Rock Mech Min Sci Geomech Abstr 10(6):493–507

    Article  Google Scholar 

  • Han DY, Li KH, Meng JJ (2020) Evolution of nonlinear elasticity and crack damage of rock joint under cyclic tension. Int J Rock Mech Min Sci 128:104286

    Article  Google Scholar 

  • Kaklis K, Maurigiannakis S, Agioutantis Z, Istantso C (2009) Influence of specimen shape on the indirect tensile strength of transversely isotropic Dionysos marble using the three-point bending test. Strain 45(5):393–399

    Article  Google Scholar 

  • Kaiser J (1950) A study of acoustic phenomena in tensile tests. Technische Hochschule Munched, FRG.

  • Keneti A, Sainsbury B (2018) Characterization of strain-burst rock fragments under a scanning electron microscope-An illustrative study. Eng Geol 246:12–18

    Article  Google Scholar 

  • Kharghani M, Goshtasbi K, Nikkah M, Ahangari K (2021) Investigation of the Kaiser effect in anisotropic rocks with different angles by acoustic emission method. Appl Acoust 175:107831

    Article  Google Scholar 

  • Lavrov A (2003) The Kaiser effect in rocks: principles and stress estimation techniques. Int J Rock Mech Min Sci 40:151–171

    Article  Google Scholar 

  • Lee YK, Pietruszczak S (2015) Tensile failure criterion for transversely isotropic rocks. Int J Rock Mech Min Sci 79:205–215

    Article  Google Scholar 

  • Li HB, Li JC, Liu B, Li SQ, Xia X (2013) Direct tension test for rock material under different strain rates at quasi-static loads. Rock Mech Rock Eng 46:1247–1254

    Article  Google Scholar 

  • Li LR, Deng JH, Zheng L, Liu JF (2017) Dominant frequency characteristics of acoustic emissions in white marble during direct tensile tests. Rock Mech Rock Eng 50(5):1337–1346

    Article  Google Scholar 

  • Li XZ, Qi CZ, Shao ZS, Ma C (2018) Evaluation of strength and failure of brittle rock containing initial cracks under lithospheric conditions. Acta Geophys 66(2):141–152

    Article  Google Scholar 

  • Li XZ, Qu XL, Qi CZ, Shao ZS (2019) A unified analytical method calculating brittle rocks deformation induced by crack growth. Int J Rock Mech Min Sci 113:134–141

    Article  Google Scholar 

  • Li XZ, Qi CZ, Zhang PC (2020) A micro-macro confined compressive fatigue creep failure model in brittle solids. Int J Fatigue 130:105278

    Article  Google Scholar 

  • Li XZ, Qi CZ (2022) An analytical method for predicting direct tensile creep fracture in brittle solids containing initial microcracks. Acta Mech Solida Sin 35:152–160

    Article  Google Scholar 

  • Liao JJ, Yang MT, Hsieh HY (1997) Direct tensile behavior of a transversely isotropic rock. Int J Rock Mech Min Sci 34(5):837–849

    Article  Google Scholar 

  • Liao Z, Zhu J, Tang C (2019) Numerical investigation of rock tensile strength determined by direct tension, Brazilian and three-point bending tests. Int J Rock Mech Min Sci 115:21–32

    Article  Google Scholar 

  • Mahanta B, Singh TN, Ranjith PG (2016) Influence of thermal treatment on mode I fracture toughness of certain indian rocks. Eng Geol 210:103–114

    Article  Google Scholar 

  • Martin CD, Chandler NA (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstr 31(6):643–659

    Article  Google Scholar 

  • Niu H, Zhang X, Tao Z, He M (2020) Damage constitutive model of microcrack rock under tension. Adv Civil Eng 14:8835305

    Google Scholar 

  • Nova R, Zaninetti A (1990) An investigation into the tensile behaviour of a schistose rock. Int J Rock Mech Min Sci Geomech Abstr 27(4):231–242

    Article  Google Scholar 

  • Okubo S, Fukui K (1996) Complete stress-strain curves for various rock types in uniaxial tension. Int J Rock Mech Min Sci Geomech Abstr 33(6):549–556

    Article  Google Scholar 

  • Saadat M, Taheri A (2020) Modelling micro-cracking behaviour of granite during direct tensile test using cohesive GBM approach. Eng Fract Mech 239:107297

    Article  Google Scholar 

  • Schock RN, Louis H (1982) Strain behavior of a granite and a graywacke sandstone in tension. J Geophys Res 87(B9):7817–7823

    Article  Google Scholar 

  • Shang J, Hencher SR, West LJ (2016) Tensile strength of geological discontinuities including incipient bedding, rock joints and mineral veins. Rock Mech Rock Eng 49(11):4213–4225

    Article  Google Scholar 

  • Shang J, Duan K, Gui Y, Handley K, Zhao Z (2017) Numerical investigation of the direct tensile behaviour of laminated and transversely isotropic rocks containing incipient bedding planes with different strengths. Comput Geotech 104:373–388

    Article  Google Scholar 

  • Shen H, Li X, Li Q, Wang H (2020) A method to model the effect of pre-existing cracks on P-wave velocity in rocks. J Rock Mech Geotech Eng 12(3):493–506

    Article  Google Scholar 

  • Tada H, Paris PC, Irwin GR (1985) The Stress Analysis of Cracks Handbook (Del Res., St. Louis, Mo).

  • Tang CA, Tham LG, Wang SH, Liu H, Li WH (2007) A numerical study of the influence of heterogeneity on the strength characterization of rock under uniaxial tension. Mech Mater 39(4):326–339

    Article  Google Scholar 

  • Tao R, Sharifzadeh M, Zhang Y, Feng X (2020) Analysis of mafic rocks microstructure damage and failure process under compression test using quantitative scanning electron microscopy and digital images processing. Eng Fract Mech 231:107019

    Article  Google Scholar 

  • Tham LG, Liu H, Tang CA, Lee P, Tsui Y (2005) On tension failure of 2-D rock specimens and associated acoustic emission. Rock Mech Rock Eng 38(1):1–19

    Article  Google Scholar 

  • Thomas RN, Paluszny A, Zimmerman RW (2020) Growth of three-dimensional fractures, arrays, and networks in brittle rocks under tension and compression. Comput Geotech 121:103447

    Article  Google Scholar 

  • Voutilainen M, Miettinen A, Sardini P, Parkkonen J, Sammaljärvi J, Gylling B, Selroos J, Yli-Kaila M, Koskinen L, Siitari-Kauppi M (2019) Characterization of spatial porosity and mineral distribution of crystalline rock using x-ray micro computed tomography, C-14-PMMA autoradiography and scanning electron microscopy. Appl Geochem 101:50–61

    Article  Google Scholar 

  • Wang Y, Li CH, Hu YZ (2019) 3D image visualization of meso-structural changes in a bimsoil under uniaxial compression using x-ray computed tomography (CT). Eng Geol 248:61–69

    Article  Google Scholar 

  • Wu BB, Chen R, Xia KW (2015) Dynamic tensile failure of rocks under static pre-tension. Int J Rock Mech Min Sci 80:12–18

    Article  Google Scholar 

  • Xu Y, Yao W, Xia KW (2020) Numerical study on tensile failures of heterogeneous rocks. J Rock Mech Geotech Eng 12(01):50–58

    Article  Google Scholar 

  • Yang L, Jiang Y, Li S, Li B (2013) Experimental and numerical research on 3D crack growth in rocklike material subjected to uniaxial tension. J Geotech Geoenviron Eng 139(10):1781–1788

    Article  Google Scholar 

  • Yao W, Xia K, Li X (2018) Non-local failure theory and two-parameter tensile strength model for semi-circular bending tests of granitic rocks. Int J Rock Mech Min Sci 110:9–18

    Article  Google Scholar 

  • Zhang B, Yang XY, Li SC, Guo S, Tang PY, Li HY, Yang L, Sun HF, Wang SG (2017) Uniaxial tensile failure properties of rock-like specimens with two overlapped X -type flaws. J China Coal Soc 42(08):1988–1994

    Google Scholar 

  • Zhang GK, Li HB, Wang MY, Li XF (2020) Crack initiation of granite under uniaxial compression tests: a comparison study. J Rock Mech Geotech Eng 12(3):656–666

    Article  Google Scholar 

  • Zhang Q, Duan K, Xiang W, Yuan S, Jiao YY (2018) Direct tensile test on brittle rocks with the newly developed centering apparatus. Geotech Test J 41(1):92–102

    Google Scholar 

  • Zhang Y, Deng H, Deng J, Liu C, Ke B (2019) Peridynamics simulation of crack propagation of ring-shaped specimen like rock under dynamic loading. Int J Rock Mech Min Sci 123:104093

    Article  Google Scholar 

  • Zhou T, Zhu JB, Ju Y, Xie HP (2019a) Volumetric fracturing behavior of 3D printed artificial rocks containing single and double 3D internal flaws under static uniaxial compression. Eng Fract Mech 205:190–204

    Article  Google Scholar 

  • Zhou XP (2004) Analysis of the localization of deformation and the complete stress–strain relation for mesoscopic heterogeneous brittle rock under dynamic uniaxial tensile loading. Int J Solids Struct 41(5–6):1725–1738

    Article  MATH  Google Scholar 

  • Zhou XP, Jia ZM, Berto F (2019b) Simulation of cracking behaviours in interlayered rocks with flaws subjected to tension using a phase-field method. Fatigue Fract Eng Mater Struct 42(8):1679–1698

    Article  Google Scholar 

  • Zhou YX, Xia KW, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci 49(1):105–112

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51708016 and 12172036), the Scientific Research Program of Beijing Municipal Education Commission (KM202110016014), the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture (Grant No. JDYC20200307), and the Fundamental Research Funds for Beijing Universities (Grant No. X20129).

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Che, X., Yan, H. et al. A micro–macro method for evaluating progressive and direct tensile fractures in brittle rocks. Geomech. Geophys. Geo-energ. Geo-resour. 8, 133 (2022). https://doi.org/10.1007/s40948-022-00450-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40948-022-00450-x

Keywords

Navigation