Skip to main content
Log in

Modeling of aquifer potentiality using GIS-based knowledge-driven technique: a case study of hard rock geological setting, southwestern Nigeria

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

The spatial prediction of how aquifers store and transmit sufficient groundwater in subtle hydrogeological conditions typical of crystalline basement complex is quite challenging. This study explored diverse methodologies including remote sensing, geophysical and knowledge-driven data mining model for possible solution. The acquired geophysical, remote sensed, ancillary, and climate data were processed applying geophysical and geospatial software to determine both subsurface geophysical parameters (SGPs) and surface hydrological parameters (SHPs). Five aquifer potentiality conditioning factors (APCFs) based on the results of the interpreted SGPs and SHPs were derived. The produced APCFs maps were assigned suitable weights using the standard Saaty’s scale in the context of analytical hierarchy process (AHP) data mining technique. An aquifer potentiality prediction index (APPI) data mining model was developed for integrating the APCFs maps to compute the APPI values in the range of 1.24–4.37 for the study area. Based on the estimated APPI results, the aquifer potentiality prediction zone (APPZ) map of the area was produced in GIS environment. The map revealed that about 76% of the areal extent account for the very low, low, and medium predicted aquifer potential classes and 24% of the area covers the moderate-high to high aquifer potential classes. The prediction accuracy of the produced APPZ map was established via statistical analysis of Borehole yield rate and Geoelectrical Parameters in-situ Modeling validations results. The results of the study established the new approach of modeling SGPs and SHPs to inform decision-making process for locating appropriate positions of new productive wells in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from the Nigerian Geological Survey Agency (NGSA) Map, 1966)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdalla F (2012) Mapping of groundwater prospective zones using remote sensing and GIS techniques: a case study from the Central Eastern Desert, Egypt. J Afr Earth Sci 70:8–17. https://doi.org/10.1016/j.jafrearsci.2012.05.003

    Article  Google Scholar 

  • Adeniji AE, Omonona OV, Obiora DN, Chukudebelu JU (2014) Evaluation of soil corrosivity and aquifer protective capacity using geoelectrical investigation in Bwari basement complex area, Abuja. J Earth Syst Sci 123(3):491–502. https://doi.org/10.1007/s12040-014-0416-1

    Article  Google Scholar 

  • Adeoye-Oladapo OO, Mogaji KA, Oladapo MI (2015) Multi-array hydro-geoelectric characterization of a crystalline basement complex environment. Phys Sci Int J. https://doi.org/10.9734/PSIJ/2015/17444

    Article  Google Scholar 

  • Adesida A, Anifowose AYB, Ojo JS (2012) A study of basement fracture pattern around Akoko area of southwestern Nigeria for groundwater potential using high-resolution satellite imagery and electrical resistivity. Global J Geol Sci 10(1):59–69

    Google Scholar 

  • Adiat KAN, Nawawi MNM, Abdullah K (2012) Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool—a case of predicting potential zones of sustainable groundwater resources. J Hydrol 440–441:75–89. https://doi.org/10.1016/j.jhydrol.2012.03.028

    Article  Google Scholar 

  • Adiat KAN, Nawawi MNM, Abdullah K (2013) Application of multi-criteria decision analysis to geoelectric and geologic parameters for spatial prediction of groundwater resources potential and aquifer evaluation. Pure Appl Geophys 170:453–471

    Article  Google Scholar 

  • Adiat KAN, Ajayi OF, Akinlalu AA, Tijani IB (2019) Prediction of groundwater level in basement complex terrain using artificial neural network: A case of Ijebu-Jesa, southwestern Nigeria. Appl Water Sci 10(1):8. https://doi.org/10.1007/s13201-019-1094-6

    Article  Google Scholar 

  • Adiat KAN, Ajayi OF, Akinlalu AA, Tijani IB (2020) Prediction of groundwater level in basement complex terrain using artificial neural network: a case of Ijebu-Jesa, southwestern Nigeria. Appl Water Sci 10(8):1–14

    Google Scholar 

  • Aizebeokhai AP (2010) 2D and 3D geoelectrical resistivity imaging: Theory and field design. Sci Res Essays 5(23):3592–3605

    Google Scholar 

  • Aizebeokhaia AP, Mohamed MM, Oladunjoye A, Mayowa BA, Bayo-Solarina OA, Sanuaded CE, Thompson FS, Ajayi Osagie Khaguere AE (2021) Evaluating the groundwater potential of coastal aquifer using geoelectrical resistivity survey and porosity estimation: A case in Ota SW Nigeria. Groundw Sustain Dev 12:100488

    Article  Google Scholar 

  • Ajaykumar KK, Bhavana NU, Sankhua RN (2020) Assessment of recharge potential zones for groundwater development and management using geospatial and MCDA technologies in semiarid region of Western India. SN Appl Sci. https://doi.org/10.1007/s42452-020-2079-7

    Article  Google Scholar 

  • Akinlalu AA, Adegbuyiro A, Adiat KAN, Akeredolu BE, Lateef WY (2017) Application of multi-criteria decision analysis in prediction of groundwater resources potential: a case of Oke-Ana, Ilesa Area Southwestern, Nigeria. NRIAG J Astron Geophys 6(1):184–200. https://doi.org/10.1016/j.nrjag.2017.03.001

    Article  Google Scholar 

  • Akinlalu AA, Mogaji KA, Adebodun TS (2021) Assessment of aquifer vulnerability using a developed “GODL” method (modified GOD model) in a schist belt environ Southwestern Nigeria. Environ Monit Assess 193:199

    Article  Google Scholar 

  • Aladejana OO, Anifowose AYB, Fagbohun BJ (2016) Testing the ability of an empirical hydrological model to verify a knowledge-based groundwater potential zone mapping methodology. Model Earth Syst Environ 2(4):1–17. https://doi.org/10.1007/s40808-016-0234-3

    Article  Google Scholar 

  • Aleke CG, Ibuot JC, Obiora DN (2018) Application of electrical resistivity method in estimating geohydraulic properties of a sandy hydrolithofacies: a case study of Ajali Sandstone in Ninth Mile, Enugu State Nigeria. Arab J Geosci 11(12):322. https://doi.org/10.1007/s12517-018-3638-8

    Article  Google Scholar 

  • Al-Saud M (2010) Mapping potential areas for groundwater storage in Wadi Aurnah Basin, western Arabian Peninsula, using remote sensing and geographic information system techniques. Hydrogeol J 18:1481–1495

    Article  Google Scholar 

  • Anudu GK, Essien BI, Obrike SE (2014) Hydrogeophysical investigation and estimation of groundwater potentials of the Lower Palaeozoic to Precambrian crystalline basement rocks in Keffi area, north-central Nigeria, using resistivity methods. Arab J Geosci 7(1):311–322. https://doi.org/10.1007/s12517-012-0789-x

    Article  Google Scholar 

  • Arshad A, Zhang Z, Zhang W, Dilawar A (2020) Mapping favorable groundwater potential recharge zones using a GIS-based analytical hierarchical process and probability frequency ratio model: a case study from an agro-urban region of Pakistan. Geosci Front 11(5):1805–1819

    Article  Google Scholar 

  • Biswajit D, Subodh CP (2020) Assessment of groundwater vulnerability to over-exploitation using MCDA, AHP, fuzzy logic and novel ensemble models: a case study of Goghat-I and II blocks of West Bengal, India. Environ Earth Sci 79, Article number: 104

  • Chandra S, Ahmed S, Ram A, Dewandel B (2008) Estimation of hard rock aquifers hydraulic conductivity from geoelectrical measurements: a theoretical development with field application. J Hydrol 357(3):218–227. https://doi.org/10.1016/j.jhydrol.2008.05.023

    Article  Google Scholar 

  • Chang-Jo FC, Andrea GF (2003) Validation of spatial prediction models for landslide hazard mapping. J Hydrol 30(3):451–472

    Google Scholar 

  • Chen W, Li H, Hou E, Wang S, Wang G, Panahi M, Li T, Peng T, Guo C, Niu C, Xiao L, Wang J, Xie X, Ahmad BB (2018) GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Sci Total Environ 634:853–867. https://doi.org/10.1016/j.scitotenv.2018.04.055

    Article  Google Scholar 

  • Chen W, Panahi M, Khosravi K, Pourghasemi HR, Rezaie F, Parvinnezhad D (2019) Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization. J Hydrol 572:435–448. https://doi.org/10.1016/j.jhydrol.2019.03.013

    Article  Google Scholar 

  • Dewandel B, Lachassagne P, Boudier F, Al-Hattali S, Ladouche B, Pinault J-L, Al-Suleimani Z (2005) A conceptual hydrogeological model of ophiolite hard-rock aquifers in Oman based on a multiscale and a multidisciplinary approach. Hydrogeol J 13(5):708–726. https://doi.org/10.1007/s10040-005-0449-2

    Article  Google Scholar 

  • Dinesh P, Rupendra M, Neelam M, Surendra RS, Purushottam T (2021) Evaluation of parameter sensitivity for groundwater potential mapping in the mountainous region of Nepal Himalaya. Groundw Sustain Dev 13

  • Ejiogu BC, Opara AI, Nwosu EI, Nwofor OK, Onyema JC, Chinaka JC (2019) Estimates of aquifer geo-hydraulic and vulnerability characteristics of Imo State and environs, Southeastern Nigeria, using electrical conductivity data. Environ Monit Assess 191(4):238. https://doi.org/10.1007/s10661-019-7335-1

    Article  Google Scholar 

  • Elmahdy SI, Mohamed MM (2014) Groundwater potential modelling using remote sensing and GIS: a case study of the Al Dhaid area United Arab Emirates. Geocarto Int 29(4):433–450. https://doi.org/10.1080/10106049.2013.784366

    Article  Google Scholar 

  • El-Meselhy A, Abdelhalim A, Bassem SN (2020) Geospatial analysis in groundwater resources management as a tool for reclamation areas of New Valley (El-Oweinat). Egypt. J Afr Earth Sci 162:103720

    Article  Google Scholar 

  • Falebita D, Olajuyigbe O, Abeiya SS, Oche C, Ademola A (2020) Interpretation of geophysical and GIS-based remote sensing data for sustainable groundwater resource management in the basement of north-eastern Osun State Nigeria. SN Appl Sci. https://doi.org/10.1007/s42452-020-03366-x

    Article  Google Scholar 

  • Gaber A, Adel KM, El Galladi A, Abdelkareem M, Ahmed MB, Magaly K (2020) Remote sensing and hydro-geophysical techniques mapping the groundwater potentiality of west Qena Area, Egypt, using integrated. Remote Sens 12(10)

  • Gnanachandrasamy B, Bagyaraj M, Alemayehu TM, Bedassa G (2019) Data of remote sensing and GIS- to demarcatethe potential sector of groundwater in DebreBerhan Amhara region, Ethiopia. Data Brief. https://doi.org/10.1016/j.dib.2019.104542

    Article  Google Scholar 

  • Hazell JRT, Cratchley CR, Preston AM (1988) The location of aquifers in crystalline rocks and alluvium in Northern Nigeria using combined electromagnetic and resistivity techniques. Q J Eng Geol Hydrogeol 21(2):159–175. https://doi.org/10.1144/GSL.QJEG.1988.021.02.05

    Article  Google Scholar 

  • Ikechukwu BI (2012) Evaluation of the aquifer hydraulic characteristics from electrical sounding data in Imo River Basin, South Eastern Nigeria: the case of Ogwashi–Asaba Formation. Int J Modern Eng Res (IJMER) 2(5):3237–3244 (http://www.ijmer.com, ISSN: 2249–6645)

  • Jasmil I, Mallikarjuna P (2011) Satellite-based remote sensing and geographic information systems and their application in the assessment of groundwater potential, with particular reference to India. Hydrogeol J 19:729–740

    Article  Google Scholar 

  • Jha MK, Peiffer S (2006) Applications of remote sensing and GIS technologies in groundwater hydrology: past, present and future. BayCEER, Bayreuth, p 201

    Google Scholar 

  • Jha MK, Chowdhury A, Chowdary VM, Peiffer S (2007) Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resour Manage 21(2):427–467. https://doi.org/10.1007/s11269-006-9024-4

    Article  Google Scholar 

  • Jha MK, Chowdary VM, Chowdhury A (2010) Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeol J 18(7):1713–1728. https://doi.org/10.1007/s10040-010-0631-z

    Article  Google Scholar 

  • Kanta A, Soupios P, Barsukov P, Kouli M, Vallianatos F (2013) Aquifer characterization using shallow geophysics in the Keritis Basin of Western Crete. Greece Environ Earth Sci 70(5):2153–2165. https://doi.org/10.1007/s12665-013-2503-z

    Article  Google Scholar 

  • Kumar MN, Murthy CS, Sai MVRS, Roy PS (2009) On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorol Appl 16(3):381–389. https://doi.org/10.1002/met.136

    Article  Google Scholar 

  • Lee S, Yong-Sung K, Hyun-Joo O (2012) Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. J Environ Manage 96(1):91–105

    Article  Google Scholar 

  • Lee S, Hong S-M, Jung H-S (2018) GIS-based groundwater potential mapping using artificial neural network and support vector machine models: The case of Boryeong city in Korea. Geocarto Int 33(8):847–861. https://doi.org/10.1080/10106049.2017.1303091

    Article  Google Scholar 

  • Lenky L, Hamori Z, Mihalffy P (2005) Investigating the hydrogeology of water–supply area using direct–current vertical electrical soundings. Geophysics. https://doi.org/10.1190/1.2000288

    Article  Google Scholar 

  • Lentswe GB, Molwalefh L (2020) Delineation of potential groundwater recharge zones using analytic hierarchy process-guided GIS in the semi-arid Motloutse watershed, eastern Botswana. J Hydrol Regio Stud 28:100674

    Article  Google Scholar 

  • Machiwal D, Jha MK (2014) Characterizing rainfall–groundwater dynamics in a hard-rock aquifer system using time series, geographic information system and geostatistical modelling. Hydrol Process 28(5):2824–2843. https://doi.org/10.1002/hyp.9816

    Article  Google Scholar 

  • Machiwal D, Jha MK, Mal BC (2011) Assessment of groundwater potential in a Semi-Arid Region of India using remote sensing, GIS and MCDM techniques. Water Resour Manage 25(5):1359–1386. https://doi.org/10.1007/s11269-010-9749-y

    Article  Google Scholar 

  • Madan KJ, Chowdary VM, Chowdhury A (2010) Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeol J 18:1713–1728

    Article  Google Scholar 

  • Madrucci V, Taioli F, de Araújo CC (2008) Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, São Paulo State, Brazil. J Hydrol 357(3):153–173. https://doi.org/10.1016/j.jhydrol.2008.03.026

    Article  Google Scholar 

  • Manap MA, Nampak H, Pradhan B, Lee S, Sulaiman WNA, Ramli MF (2014) Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arab J Geosci 7(2):711–724. https://doi.org/10.1007/s12517-012-0795-z

    Article  Google Scholar 

  • Manap MA, Sulaiman WNA, Ramli MF, Pradhan B, Surip N (2011) A knowledge-driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia. Arab J Geosci 1–17

  • Masoud M (2020) Groundwater resources management of the shallow groundwater aquifer in the desert fringes of El Beheira Governorate Egypt. Earth Syst Environ 4:147–165

    Article  Google Scholar 

  • Mogaji KA (2017) Development of AHPDST vulnerability indexing model for groundwater vulnerability assessment using hydrogeophysical derived parameters and GIS application. Pure Appl Geophys 174(4):1787–1813. https://doi.org/10.1007/s00024-017-1499-9

    Article  Google Scholar 

  • Mogaji KA, Lim HS (2020) A GIS-based linear regression modeling approach to assess the impact of geologicrock types on groundwater recharge and its hydrological implication. Model Earth Syst Environ 6(1):183–199. https://doi.org/10.1007/s40808-019-00670-3 (ISSN 2363-6203)

    Article  Google Scholar 

  • Mogaji KA, Omosuyi GO, Adelusi AO, Lim HS (2016) Application of GIS-based evidential belief function model to regional groundwater recharge potential zones mapping in hardrock geologic terrain. Environ Process 3(1):93–123. https://doi.org/10.1007/s40710-016-0126-6

    Article  Google Scholar 

  • Murthy KSR (2000) Ground water potential in a semi-arid region of Andhra Pradesh—a geographical information system approach. Int J Remote Sens 21(9):1867–1884 (Published online: 25 Nov 2010)

    Article  Google Scholar 

  • Nejad SG, Falah F, Daneshfar M, Haghizadeh A, Rahmati O (2017) Delineation of groundwater potential zones using remote sensing and GIS-based data-driven models. Geocarto Int 32(2):167–187. https://doi.org/10.1080/10106049.2015.1132481

    Article  Google Scholar 

  • Nowreen S, Newton IH, Zzaman RU et al (2021) Development of potential map for groundwater abstraction in the northwest region of Bangladesh using RS-GIS-based weighted overlay analysis and water-table-fluctuation technique. Environ Monit Assess 193:24. https://doi.org/10.1007/s10661-020-08790-5

    Article  Google Scholar 

  • Ofomola MO, Adiat KAN, Olayanju GM, Ako BD (2009) Integrated geophysical methods for post foundation studies, Obanla Staff Quarters of the University of Technology, Akure Nigeria. Pac J Sci Technol 10(2):93–111

    Google Scholar 

  • Oh HJ, Yong-Sung K, Jong-Kuk C, Park E, Lee S (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City Korea. J Hydrol 399(3–4):158–172

    Article  Google Scholar 

  • Okogbue CO, Omonona OV (2013) Groundwater potential of the Egbe-Mopa basement area, central Nigeria. Hydrol. Sci. J. 58 Potential Groundwater Recharge Sites Mapping in a Typical Basement Terrain: a GIS Methodology Approach Oluwaseun Franklin Olabode. J Geovisualizat Spatial Anal 3(5)

  • Olorunfemi MO, Fasuyi SA (1993) Aquifer types and the geoelectric/hydrogeologic characteristics of part of the central basement terrain of Nigeria (Niger State). J Afr Earth Sci (middle East) 16(3):309–317. https://doi.org/10.1016/0899-5362(93)90051-Q

    Article  Google Scholar 

  • Omosuyi GO, Oshodi DR, Sanusi SO, Igbagbo IA (2021) Groundwater potential evaluation using geoelectrical and analytical hierarchy process modeling techniques in Akure-Owode, southwestern Nigeria. Model Earth Syst Environ 7:145–158

    Article  Google Scholar 

  • Omosuyi GO, Ojo JS, Enikanselu PA (2003) Geophysical investigation for groundwater around Obanla-Obakekere in Akure area within the basement complex of Southwestern Nigeria. J Min Geol

  • Omotola OO, Oladapo MI, Akintorinwa OJ (2020) Modeling assessment of groundwater vulnerability to contamination risk in a typical basement terrain case of vulnerability techniques application comparison study. Model Earth Syst Environ 6:1253–1280

    Article  Google Scholar 

  • Oyedele KF, Fatuna OT, Coker OJ (2011) Geophysical assessment of subsurface coastal sediments and their engineering implications. Arab J Geosci 4:543–550

    Article  Google Scholar 

  • Oyeyemi KD, Aizebeokhai AP, Ndambuki JM, Sanuade OA, Olofinnade OM, Adagunodo TA, Olaojo AA, Adeyemi GA (2018) Estimation of aquifer hydraulic parameters from surficial geophysical methods: a case study of Ota, Southwestern Nigeria. IOP Conf Ser Earth Environ Sci 173:012028. https://doi.org/10.1088/1755-1315/173/1/012028

    Article  Google Scholar 

  • Ozdemir A (2011) Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J Hydrol 405(1):123–136. https://doi.org/10.1016/j.jhydrol.2011.05.015

    Article  Google Scholar 

  • Park I, Kim Y, Lee S (2014) Groundwater productivity potential mapping using evidential belief function. Groundwater 52(S1):201–207. https://doi.org/10.1111/gwat.12197

    Article  Google Scholar 

  • Pazand K, Ardeshir HK, Mohammad A (2012) Using TOPSIS approaches for predictive porphyry Cu potential mapping: a case study in Ahar-Arasbaran area (NW, Iran). Comput Geosci 49:62–71

    Article  Google Scholar 

  • Prasad RK, Mondal NC, Banerjee P, Nandakumar MV, Singh VS (2008) Deciphering potential groundwater zone in hardrock through the application of GIS. Environ Geol 55:467–475

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill, New York

    Google Scholar 

  • Saaty TL, Vargas GL (1991) Prediction, projection and forecasting. Kluwer, Dordrecht

    Book  Google Scholar 

  • Satpathy BN, Kanungo BN (1976) Groundwater exploration in hard rock, a case study. Geophys Prospect 24(4):725–736

    Article  Google Scholar 

  • Shailaja G, Gupta G, Suneetha N, Laxminarayana M (2019) Assessment of aquifer zones and its protection via second-order geoelectric indices in parts of drought-prone region of Deccan Volcanic Province, Maharashtra India. J Earth Syst Sci 128(4):78. https://doi.org/10.1007/s12040-019-1104-y

    Article  Google Scholar 

  • Shishaye HA, Tait DR, Befus KM, Maher DT (2019) An integrated approach for aquifer characterization and groundwater productivity evaluation in the Lake Haramaya watershed, Ethiopia. Hydrogeol J 27(6):2121–2136. https://doi.org/10.1007/s10040-019-01956-7

    Article  Google Scholar 

  • Singh KP (2005) Non-linear estimation of aquifer parameters from surface resistivity measurements. Hydrol Earth Syst Sci Discuss 2:917–938

    Google Scholar 

  • Subhasish S, Prolay M, Niladri D (2020) Delineation of groundwater potential zones using MIF and AHP models: a micro-level study on Suri Sadar Sub-Division, Birbhum District, West Bengal, India. Groundw Sustain Dev 12:100547

    Google Scholar 

  • Tahmassebipoor N, Rahmati O, Noormohamadi F, Lee S (2015) Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arab J Geosci 9(1):79. https://doi.org/10.1007/s12517-015-2166-z

    Article  Google Scholar 

  • Tizro AT, Voudouris KS, Salehzade M, Mashayekhi H (2010) Hydrogeological framework and estimation of aquifer hydraulic parameters using geoelectrical data: a case study from West Iran. Hydrogeol J 18(4):917–929. https://doi.org/10.1007/s10040-010-0580-6

    Article  Google Scholar 

  • Umar ND, Igwe O (2019) Geo-electric method applied to groundwater protection of a granular sandstone aquifer. Appl Water Sci 9(4):112. https://doi.org/10.1007/s13201-019-0980-2

    Article  Google Scholar 

  • Utom AU, Benard IO, Boniface CEE, Nkechi EE, Harold CO (2013) Estimation of subsurface hydrological parameters around Akwuke, Enugu Nigeria using surface resistivity measurements. J Geophys Eng 2013(10):025016

    Article  Google Scholar 

  • Ying X, Guang-Ming Z, Gui-Qiu C, Tang L, Ke-Lin W, Dao-You H (2007) Combining AHP with GIS in synthetic evaluation of eco-environment quality—a case study of Hunan Province China. Ecol Model 209(2–4):97–109

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge Global land cover facilities (GLCF) Tertiary and NASA'S land process distributed active Centre (LPPAAC) for providing the data used in this study. The author expresses appreciation to the management of Federal University of Technology Akure, Ondo state, Nigeria for supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehinde Anthony Mogaji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogaji, K.A., Ezekiel, G.I. & Abodunde, O.O. Modeling of aquifer potentiality using GIS-based knowledge-driven technique: a case study of hard rock geological setting, southwestern Nigeria. Sustain. Water Resour. Manag. 7, 64 (2021). https://doi.org/10.1007/s40899-021-00538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-021-00538-4

Keywords

Navigation