Skip to main content

Advertisement

Log in

Assessment of groundwater chemistry in layered coastal aquifers using multivariate statistical analysis

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

This study presents statistical analysis of hydrogeochemical data of the groundwater samples collected from the layered formations of the Cretaceous, Tertiary (Lower Cuddalore and Upper Cuddalore) and Quaternary in Pondicherry region, South India. It focuses on the sources, controls and geochemical processes occurring in these formations. The results obtained from statistical analysis of 11 important hydrochemical parameters indicate dissimilar elemental correlations among aquifers. Quaternary aquifer exhibit good correlations among ion pairs Ca+–Cl and Na+–Cl indicating source controls like salts from unsaturated zone, fertilizers, industrial wastes and also processes like ion exchange. Upper and lower Tertiary aquifers have good correlations among ions as Ca2+–Mg2+–Na+–K+–Cl–HCO3 2−—H4SiO4 indicating dominant role of silicate rock weathering processes, while Cretaceous formation show high correlations among Ca+–Mg2+–SO4 2−–HCO3 indicating carbonate and sulphate mineral contribution. High positive ion correlations among Na+–K+–Cl observed in Cretaceous formation reflects contribution from marine sources. The study has also brought out the three major processes active in theses aquifers like parental, anthropogenic and mixing. The spatial distribution of the factor score for individual groundwater samples reveals the sources of the constituents that are in good agreement with those deduced from the geological and hydrogeological evidences. A conceptual geochemical model is developed to improve the understanding of this complex multi-layered aquifer system that would help the water authorities to plan for judicious exploitation of groundwater resources management without significantly hampering the groundwater quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alyamani M, Bazuhar A, Hussein M (1994) Interpretation of groundwater chemistry by factor analysis technique. JKAU Earth Sci 7:89–100

    Article  Google Scholar 

  • Amon RMW, Benner R (1996) Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr 41:41–51

    Article  Google Scholar 

  • Anandhan P, Ramanathan AL, Chidambaram S, Manivannan R, Ganesh N, Srinivasamoorthy K (2000) A study on the seasonal variation in the geochemistry of the groundwater in and around Neyveli region, Tamilnadu. In: Proceedings of International Conference on Hydrogeochemistry. Annamalai University, India

    Google Scholar 

  • APHA (1995) Standard methods for the examination of water and waste water, 19th edn. APHA, Washington DC

    Google Scholar 

  • Asai Rani L, Suresh Babu DS (2008) A statistical evulation of groundwater chemistry from the west coast of Tamil Nadu, India. Indian J Mar Sci 32(2):186–192

    Google Scholar 

  • Avdullahi S, Fejza I, Tmava A (2013) Evaluation of groundwater pollution using multivariate statistical analysis: a case study from Burimi area, Kosovo. J Biol Env Sci 3(1):95–102

    Google Scholar 

  • Bengraine K, Marhaba TF (2003) Using principal component analysis to monitor spatial and temporal changes in water quality. J Hazard Mater 100(1–3):179–195

    Article  Google Scholar 

  • Bhattacharya P, Jacks G, Ahmed KM, Khan AA, Routh J (2002) Arsenic in groundwater of the Bengal delta plain aquifers in Bangladesh. Bull Environ Contam Toxicol 69:538–545

    Article  Google Scholar 

  • Bu H, Tan X, Li S, Zhang Q (2010) Temporal and spatial variations of water quality in the Jinshui River of the South Qinling Mts., China. Ecotoxicol Environ Saf 73:907–913

    Article  Google Scholar 

  • Cabaniss SE, Madey G, Leff L, Maurice PA, Wetzel R (2005) A stochastic model for the synthesis and degradation of natural organic matter. Part I. Data structures and reaction kinetics. Biogeochemistry 76:319–347

    Article  Google Scholar 

  • Centre for Groundwater Board (CGWB) (1993) Groundwater resources and development prospects in Pondicherry region, Union Territory of Pondicherry, 63

  • Central Ground Water Board (CGWB) (2007) Water year. Ground water brochure, Puducherry region, Puducherry, U.T Of Puducherry

  • Chapelle FH, Bradley PM, Goode DJ, Tiedeman C, Lacombe PJ, Kaiser K, Benner R (2009) Biochemical indicators for the bioavailability of organic carbon in ground water. Ground Water 47:108–121

    Article  Google Scholar 

  • Chidambaram S (2000) Hydrogeochemical studies of groundwater in Periyar district, Tamilnadu, India. Unpublished Ph.D thesis, Department of Geology, Annamalai University, India

  • Chidambaram S, Ramanathan AL, Srinivasamoorthy K (2003) Lithological influence on the groundwater chemistry—Periyar district a case study. In: International Conference on coastal and freshwater issues. Institute for Ocean Management, Integrated Center for Environmental Sciences, Chennai, 8–10 Dec 2003

  • Chidambaram S, Vijayakumar V, Srinivasamoorthy K, Anandhan P, Prasanna MV, Vasudeven S (2007) A study on variation in ionic composition of aqueous system in different lithounits around Perambalure region, Tamil Nadu. J Geol Soc India 70:1061–1069.

    Google Scholar 

  • Chidambaram S, Ramanathan AL, Prasanna MV, Loganatan D, Badrinarayanan TS, Srinivasamoorthy K, Anandhan P (2008) Study on the impact of tsunami on shallow groundwater from portnova to pumpuhar, using geoelectrical technique—south east coast of India. Indian J Mar Sci 37(2):121–131

    Google Scholar 

  • Chidambaram S, Prasanna MV, Karmegam U, Singaraja C, Pethaperumal S, Manivannan R, Anandhan P, Tirumalesh K (2011) Significance of pCO2 values in determining carbonate chemistry in groundwater of Pondicherry region, India. Front Earth Sci 5(2):197–206

    Article  Google Scholar 

  • Chidambaram S, Prasanna MV, Singaraja C, Thilagavathi R, Pethaperumal S, Tirumalesh K (2012) Study on the saturation index of the carbonates in the groundwater using WATEQ4F in layered coastal aquifers of Pondicherry. J Geol Soc India 80:813–824

    Article  Google Scholar 

  • Collins MJ, Bishop AN, Farrimond P (1995) Sorption by mineral surfaces: rebirth of the classical condensation pathway for kerogen formation? Geochim Cosmochim Acta 59:2387–2391

    Article  Google Scholar 

  • Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202

    Article  Google Scholar 

  • D’Ozouville N, Violette S, Gassama N, Dia A, Jendrzejewski N (2006) Origin and modelling of water salinization in a coastal aquifer of the Bay of Bengal: the Kaluvelly watershed, Tamil Nadu, India. Bull Soc Géol Fr 177(6):333–345

    Article  Google Scholar 

  • Dalton MG, Upchurch SB (1979) Interpretation of hydrochemical facies by factor analysis. Groundwater 16(4):228–233.

    Article  Google Scholar 

  • Disaster management action plan for flood and cyclone north–east monsoon (2008)

  • Ellis BK, Stanford JA (1998) Microbial assemblages and production in alluvial aquifers of the Flathead River, Montana, USA. J N Am Benthol Soc 17(4):382–402

    Article  Google Scholar 

  • Francois R (1988) A study on the regulation of the concentrations of some trace metals (Rh, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet Sediments, British Columbia, Canada. Mar Geol 83:285–308

    Article  Google Scholar 

  • Gassama N, Dia A, Violette S (2011) Origin of salinity in a multilayered aquifer with high salinization vulnerability. Hydrol Process. doi: 10.1002/hyp.8125

    Google Scholar 

  • Gassama N, Kasper HU, Dia A, Cocirta C, Bouhnik-Lecoz M (2012) Discrimination between different water bodies from a multilayered aquifer (Kaluvelly watershed, India): trace element signature. Appl Geochem 27(3):715–728

    Article  Google Scholar 

  • Gooddy, D., Hinsby, K., 2007. Dissolved organic carbon in European groundwaters. In: EGU General Assembly, Vienna, Austria, 16–20 April 2007. Geophysical Research Abstracts.

  • Govindaradjane S, Reddy SS, Sivasankaran MA, Ramakrishna B (2007) The study on arsenic concentration in groundwater of Pondicherry region. Pollut Res 26:99–102

    Google Scholar 

  • Grande JA, Gonzalez A, Beltaran R, Sanchez-Rodas D (1996) Application of factor analysis to the study of contamination in the aquifer system of Ayamonte-Huelva (Spain). Ground Water 34(1):155–161

    Article  Google Scholar 

  • Harvey FE, Warren KJ, Voorhies MR, Drimmie RJ, Labedz TE (2003) Oxygen isotope determination of climate variation in the US Central great plains using phosphate from modern and fossil beaver tooth enamel. Geological Society of America Annual Meeting, Seattle, Washington. Geological Society of America, Boulder, Colorado. Abstracts with programs 34(7):520

  • Henrichs SM (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis—a comment. Mar Chem 49:127–136

    Article  Google Scholar 

  • Irabor O, Olobaniyi S, Oduyemi K, Akunna J (2008) Surface and groundwater water quality assessment using multivariate analytical methods: a case study of the Western Niger Delta, Nigeria. Phys Chem Earth 33:666–673

    Article  Google Scholar 

  • Johnson RA, Wichern DW (1988) Applied multivariate statistical analysis. Prentice Hall, New Jersey

    Google Scholar 

  • Johnson RA, Wichern DW (1992) Applied multivariate statistical analysis, 3rd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Klapper L, McKnight DM, Fulton JR, Blunt-Harris EL, Nevin KP, Lovley DR, Hatcher PG (2002) Fulvic acid oxidation state detection using fluorescence spectroscopy. Environ Sci Technol 36:3170–3175

    Article  Google Scholar 

  • Lambrakis N, Antonakos A, Panagopoulos G (2004) The use of multicomponent statistical analysis in hydro geological environmental research. Water Res 38(7):1862–1872

    Article  Google Scholar 

  • Lawrence FW, Upchurch SB (1983) Identification of recharge areas using geochemical factor analysis. Groundwater 20:680–687

    Article  Google Scholar 

  • Lindsjo A (2005) Predicting dissolved organic carbon concentrations in Swedish boreal streams from map information. Graduate Thesis in Soil Science, Department of Environmental Assessment Swedish University of Agricultural Sciences, SLU

  • Love D, Hallbauer D, Amos A, Hranova R (2004) Factor analysis as a tool in groundwater quality management: two southern African case studies. Phys Chem Earth 29(15–18):1135–1143

    Article  Google Scholar 

  • Lu KL, Liu CW, Jang CS (2011) Using multivariate statistical methods to assess the groundwater quality in an arsenic-contaminated area of Southwestern Taiwan. Environ Monit Assess. doi:10.1007/s10661-011-2406-y

    Google Scholar 

  • Lutz BD, Bernhardt ES, Roberts BJ, Cory RM, Mulholland PJ (2012) Distinguishing dynamics of dissolved organic matter components in a forested stream using kinetic enrichments. Limnol Oceanogr 57:76–89

    Article  Google Scholar 

  • Mandaokar BD, Mukherjee D (2012) Palynostratigraphy of the Cuddalore formation (Early Miocene) of Panruti, Tamil Nadu, India. J Palaeontol Soc India 59(1):69–80

    Google Scholar 

  • Matthess G (1982) The properties of groundwater. Wiley, New York, p 406

  • McKnight DM, Boyer PK, Westerhoff PT, Doran T, Kulbe DT, Anderson (2010) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48

    Article  Google Scholar 

  • Nickson RT, McArthur JM, Burgess WG, Ahmed KM, Ravenscroft P, Rahman M (1998) Arsenic poisoning of Bangladesh groundwater. Nature 395:338

    Article  Google Scholar 

  • Papadimitriou S, Kennedy H, Bentaleb I, Thomas DN (2002) Dissolved organic carbon in sediments from the eastern North Atlantic. Mar Chem 79:37–47

    Article  Google Scholar 

  • Papatheodorou G, Lyberis E, Ferentinos G (1999) Use of factor analysis to study the distribution of metalliferous bauxitic tailings in the seabed of the Gulf of Corinth. Greece Nat Resour Res 8(4):277–285

    Article  Google Scholar 

  • Papatheodorou G, Hotos G, Geraga M, Avramidou D, Vorinakis T (2002a) Heavy metal concentrations in sediments of Klisova lagoon (S.E. Mesolonghi–Aitolikon Lagoon complex) W Greece. Fresen Environ. Bull 11(11):951–956

    Google Scholar 

  • Papatheodorou G, Mitsis C, Christodoulou D, Ferentinos G (2002b) A multivariate statistical approach to the investigation of pockmarks growth and activity. An example from a pock-mark field in the Gulf of Patras (W Greece). In: Proceedings of the Eighth Annual Conference of the IAMG, 15–20 September, abstract Book, Berlin

  • Paramasivam S, Alva AK, Prakash O, Cui SL (1999) Denitrification in the vadose zone and in surficial groundwater of a sandy entisol with citrus production. Plant Soil 208:307–319

    Article  Google Scholar 

  • Pethaperumal S (2010) Study on groundwater chemistry in the Pondicherry region. Ph.D. thesis. Annamalai University, India

    Google Scholar 

  • Pethaperumal S, Chidambaram S, Prasanna MV, Verma VN, Balaji K, Ramesh R, Karmegam U, Paramaguru P (2008) A study on Groundwater quality in the Pondicherry region. Eco-Chronicle 3(2):85–90

    Google Scholar 

  • Prasanna MV, Chidambaram S, Pethaperumal S, Srinivasamoorthy K, Peter AJ, Anandhan P, Vasanthavigar M (2008) Integrated geophysical and chemical study in the lower subbasin of Gadilam River, Tamilnadu, India. Environ Geosci 15(4):145–152

    Article  Google Scholar 

  • Raghava Rao KV, Krupanidhi KVJR., Balasubramaniyan G, Subramaniyan PR, Natarajan P (1976) Report on groundwater survey and exploration in the Union territory of Pondicherry and its environs, CGWB report, India

  • Ravenscroft P, McArthur JM, Hoque B (2001) Geochemical and palaeohydrological controls on pollution of groundwater by arsenic. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic exposure and health effects IV. Elsevier Science Ltd., Oxford, p 53–77

    Google Scholar 

  • Razmkhah H, Abrishamchi A, Torkian A (2010) Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: a case study on Jajrood River (Tehran, Iran). J Environ Manag 91:852–860

    Article  Google Scholar 

  • Reyment RA, Joreskog KH (1993) Applied factor analysis in the natural sciences. Cambridge University Press, Cambridge, p 371

    Book  Google Scholar 

  • Richman MB (1986) Rotation of principal components. J Climatol 6:293–335

    Article  Google Scholar 

  • Ruiz F, Gomis V, Blasco P (1990) Application of factor analysis to the hydrogeochemical study of a coastal aquifer. J Hydrol 119:169–177

    Article  Google Scholar 

  • Senthil Nathan D, Manil Kumar R, Sivamurthy Reddy S, Sivasankaran MA, Ramesh R (2012) Trace elements in groundwater of coastal aquifers of Pondicherry region, India. J Environ 01(04):111–118

    Google Scholar 

  • Senthilkumar G, Ramamanathan AL, Nainwal HC, Chidambaram S (2008) Evalution of the hydrogeochemistry of groundwater using factor analysis in the Cuddalore coastal region, Tamilnadu. Indian J Mar Sci 37(2):181–185

    Google Scholar 

  • Seymour SK, Christanis K, Bouzinos A, Papazisimou S, Papatheodorou G, Moran E, Denes G (2004) Tephrostratigraphy and tephrochronology in the Philippi peat basin, Macedonia, Northern Hellas (Greece). Quart Int 121:53–65

    Article  Google Scholar 

  • Shirodkar P, Mesquita A, Pradhan U, Verlekar X, Babu M, Vethamony P (2009) Factors controlling physico-chemical characteristics in the coastal waters of Mangalore—a multivariate approach. Environ Res 109:245–257

    Article  Google Scholar 

  • Singh KP, Malik A, Sinha S (2005) Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques: A case study. Anal Chim Acta 538(1–2):355–374

    Article  Google Scholar 

  • Spiteri C, Slompa CP, Charette MA (2008) Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): field data and reactive transport modelling Claudette, Kagan Tuncayc, Christ of Meile. Geochim Cosmochim Acta 72:3398–3412

    Article  Google Scholar 

  • Srinivasamoorthy K (2004) Hydrogeochemistry of groundwater in Salem District, Tamilnadu, India. Unpublished Ph.D Thesis. Annamalai University, India

    Google Scholar 

  • Subbarao C, Subbarao NV, Chandu SN (1995) Characterisation of groundwater contamination using factor analysis. Environ Geol 28(4):175–180

    Article  Google Scholar 

  • Sunilkumar R (1996) Distribution of organic carbon in the sediment of Cochin mangroves southwest coast of India. Indian J Mar Sci 25:274–276

    Google Scholar 

  • Swan ARH, Sandilands M (1995) Introduction to geological data analysis. Blackwell Science, Oxford, p 446

    Google Scholar 

  • Thilagavathi R, Chidambaram S, Prasanna MV, Thivya C, Singaraja C (2012) A study on groundwater geochemistry and water quality in layered aquifers system of Pondicherry region, southeast India. Appl Water Sci 2(4):253–269

    Article  Google Scholar 

  • Thilagavathi R, Chidambaram S, Prasanna MV, Pethaperumal S (2014) A study on the interpretation of Spontaneous Potential and Resistivity Logs in Layered Aquifers Sequence of Pondicherry Region, South India. Arab J Geosci 7:3715–3729

    Article  Google Scholar 

  • Tirumalesh K (2012) Characterization of groundwater in the coastal aquifers of Pondicherry region using chemical, isotopic and geochemical modeling approaches. Unpublished thesis, India

  • Vengosh A, Keren R (1996) Chemical modifications of groundwater contaminated by recharge of treated sewage effluent. Contam Hydrol 23:347–360

    Article  Google Scholar 

  • Voudouris K, Lambrakis N, Papatheodorou G, Daskalaki P (1997) An application of factor analysis for the study of the hydro-geological conditions in Plio-Pleistocene aquifers of NW Achaia (NW Peloponnesus, Greece). Math Geol 29(1):43–59

    Article  Google Scholar 

  • Wang HD, White GN, Turner F, Dixon JB (1993) Ferri hydrite, lepidocrocite and goethite in coatings from the east texas vertic soils. J Soil Sci Soc Am 57, 1381–1386.

    Article  Google Scholar 

  • Wayland K, Long D, Hyndman D, Pijanowski B, Woodhams S, Haack K (2003) Identifying relationships between base flow geochemistry and land use with synoptic sampling and R-mode factor analysis. J Environ Qual 32:180–190

    Article  Google Scholar 

  • Yidana S, Yakubo B, Akabzaa T (2010) Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. J Afr Earth Sci 58:220–234

    Article  Google Scholar 

  • Zhou F, Liu Y, Guo H (2007) Application of multivariate statistical methods to water quality assessment of the watercourses in northwestern new territories, Hong Kong. Environ Monit Assess 132:1–13

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express thanks to Ministry of Water Resources (MOWR) (No. 29/INCGW-03/2010-R&D/3052–3062) for providing necessary financial support to carry out this study and author R.T wish to express thanks to DST for providing the Inspire fellowship (DST/INSPIRE Fellowship/2010/[220] 18 March, 2011). The authors are also grateful to the editor and anonymous referees for their constructive comments and suggestions, which led to significant improvements to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Prasanna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thilagavathi, R., Chidambaram, S., Thivya, C. et al. Assessment of groundwater chemistry in layered coastal aquifers using multivariate statistical analysis. Sustain. Water Resour. Manag. 3, 55–69 (2017). https://doi.org/10.1007/s40899-017-0078-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40899-017-0078-7

Keywords

Navigation