Skip to main content

Advertisement

Log in

The Effect of Olivine Content and Curing Time on the Strength of Treated Soil in Presence of Potassium Hydroxide

  • Original Paper
  • Published:
International Journal of Geosynthetics and Ground Engineering Aims and scope Submit manuscript

Abstract

When olivine (Mg2SiO4) is activated with potassium hydroxide (KOH), it acquires the ability to improve the unconfined compressive strength of soil. This paper investigates the use of olivine for soil stabilisation through alkaline activation by focusing on the role of different alkali activated olivine contents (5–20 wt%) in stabilising native soil at different curing durations. The strength results were supported by a detailed microstructural and compositional analysis including scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Use of olivine in the presence of KOH increased the shear strength of soil up to 7.4 MPa in 90 days as a result of the formation of brucite, quartz and mullite in the structure of treated soil. This achievement implies a tremendous effect of olivine on the strength behaviour of treated soil. These results provide essential information which is significant from an environmental perspective as it offers a low energy alternative to existing technologies, for soil stabilisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Farouk A, Shahien MM (2013) Ground improvement using soil–cement columns: experimental investigation. Alexandria Eng J 52(4):733–740

    Article  Google Scholar 

  2. Horpibulsuk S (2012) Strength and microstructure of cement stabilized clay. INTECH

  3. Yi Y, Liska M, Unluer C, Al-Tabbaa A (2013) Initial investigation into the carbonation of MgO for soil stabilisation. Proc 18th Int Conf Soil Mech Geotech Eng 5:2641–2644

    Google Scholar 

  4. Pourakbar S, Asadi A, Huat BBK, Fasihnikoutalab MH (2015) Stabilization of clayey soil using ultrafine palm oil fuel ash (POFA) and cement. Transp Geotech 3:24–35

    Article  Google Scholar 

  5. Yi Y, Liska M, Akinyugha A, Unluer C, Al-Tabbaa A (2013) Preliminary laboratory-scale model auger installation and testing of carbonated soil-MgO column. Geotech Test J 36(3):1–10

    Article  Google Scholar 

  6. Friedlingstein P, Andrew RM, Rogelj J, Peters GP, Canadell JG, Knutti R, Luderer G, Raupach MR, Schaeffer M, van Vuuren DP, Le Quere C (2014) Persistent growth of CO2 emissions and implications for reaching climate targets. Nat Geosci 7(10):709–715

    Article  Google Scholar 

  7. Ke J, Mcneil M, Price L, Khanna NZ (2013) Estimation of CO2 emissions from China’ s cement production: methodologies and uncertainties methodologies and uncertainties. Energy Policy 57:172–181

    Article  Google Scholar 

  8. Hendriks P, Worrell CA, De Jager D, Blok K, Riemer (1998) Emission reduction of greenhouse gases from the cement industry. In Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies, Interlaken

  9. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933

    Article  Google Scholar 

  10. Gartner E (2004) Industrially interesting approaches to ‘low-CO2’ cements”. Cem Concr Res 34(9):1489–1498

    Article  Google Scholar 

  11. Turner LK, Collins FG (2013) Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater 43:125–130

    Article  Google Scholar 

  12. Pourakbar S, Huat BBK, Fasihnikoutalab MH, Asadi A (2015) Soil stabilisation with alkali-activated agro-waste. Environ Geotech 2(6):359–370

    Article  Google Scholar 

  13. Fasihnikoutalab MH, Westgate P, Huat BBK, Asadi A, Ball RJ, Haslinda N, Singh P (2015) New insights into potential capacity of olivine in ground improvement. Electron J Geotech Eng 20(8):2137–2148

    Google Scholar 

  14. Fasihnikoutalab MH, Asadi A, Bujang KH, Westgate P, Ball RJ, Pourakbar S (2015) Laboratory-scale model of carbon dioxide deposition for soil stabilization. J Rock Mech Geotech Eng 8(2):178–186

    Article  Google Scholar 

  15. Fasihnikoutalab MH, Asadi A, Bujang KH, Ball RJ, Pourakbar S, Parminder S (2015) Utilization of carbonating olivine for soil stabilization. Environ Geotech. doi:10.1680/jenge.15.00018

    Google Scholar 

  16. Duxson P, Provis JL (2008) Designing precursors for geopolymer cements. J Am Ceram Soc 91(12):3864–3869

    Article  Google Scholar 

  17. Rajamma R, Labrincha JA, Ferreira VM (2012) Alkali activation of biomass fly ash–metakaolin blends. Fuel 98:265–271

    Article  Google Scholar 

  18. Rashad AM (2013) Alkali-activated metakaolin: a short guide for civil Engineer—An overview. Constr Build Mater 41:751–765

    Article  Google Scholar 

  19. Buchwald A, Hilbig H, Kaps C (2007) Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition. J Mater Sci 42(9):3024–3032

    Article  Google Scholar 

  20. Bernal SA, Mejía de Gutiérrez R, Provis JL (2012) Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Constr Build Mater 33:99–108

    Article  Google Scholar 

  21. Yip CK, Lukey GC, Provis JL, van Deventer JSJ (2008) Effect of calcium silicate sources on geopolymerisation. Cem Concr Res 38:554–564

    Article  Google Scholar 

  22. Van Jaarsveld JGS, Van Deventer JSJ, Lorenzen L (1997) The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications. Miner Eng 10(7):659–669

    Article  Google Scholar 

  23. Habert G, d’Espinose de Lacaillerie JB, Roussel N (2011) An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J Clean Prod 19(11):1229–1238

    Article  Google Scholar 

  24. Ng TS, Voo YL, Foster SJ, (2012) Sustainability with ultra-high performance and geopolymer concrete construction. In: Fardis M (ed) Innovative materials and techniques in concrete construction, Springer Science+Business Media, Dordrecht, pp 81–100

    Chapter  Google Scholar 

  25. Weil M, Dombrowsk K, Buchawald A (2009) Life-cycle analysis of geopolymers. Geopolymers, structure, processing, properties and applications. Woodhead Publ Ltd 5(3):194–210

    Google Scholar 

  26. Cristelo N, Glendinning S, Fernandes L, Pinto AT (2012) Effect of calcium content on soil stabilisation with alkaline activation. Constr Build Mater 29:167–174

    Article  Google Scholar 

  27. Cristelo N, Glendinning S, Miranda T, Oliveira D, Silva R (2012) Soil stabilisation using alkaline activation of fly ash for self compacting rammed earth construction. Constr Build Mater 36:727–735

    Article  Google Scholar 

  28. Cristelo N, Glendinning S, Fernandes L, Pinto AT (2013) Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation. Acta Geotech 8(4):395–405

    Article  Google Scholar 

  29. Cristelo N, Glendinning S, Pinto AT (2011) “Deep soft soil improvement by alkaline activation”. Proc ICE-Gr Improv 164(1):1–10

    Google Scholar 

  30. Ryu GS, Lee YB, Koh KT, Chung YS (2013) The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater 47:409–418

    Article  Google Scholar 

  31. Zhang M, Guo H, El-Korchi T, Zhang G, Tao M (2013) Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Constr Build Mater 47:1468–1478

    Article  Google Scholar 

  32. Pourakbar S, Huat BBK, Asadi A, Fasihnikoutalab MH (2016) Model study of alkali-activated waste binder for soil stabilization. Int J Geosynth Gr Eng 2(4):35

    Article  Google Scholar 

  33. Pourakbar S, Asadi A, Huat BBK, Cristelo N, Fasihnikoutalab MH (2016) Application of alkali-activated agro-waste reinforced with wollastonite fibers in soil stabilization. J Mater Civ Eng 29(2):1–11

    Google Scholar 

  34. Li C, Sun H, Li L (2010) A review: the comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem Concr Res 40(9):1341–1349

    Article  Google Scholar 

  35. Weng L, Sagoe-Crentsil K (2007) Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: part I—low Si/Al ratio systems. J Mater Sci 42(9):2997–3006

    Article  Google Scholar 

  36. Duxson P, Mallicoat SW, Lukey GC, Kriven WM, van Deventer JSJ (2007) The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf A 292(1):8–20

    Article  Google Scholar 

  37. TARGET MAP (2012) Olivine distribution resources. MapGenia [Online]. http://www.targetmap.com/viewer.aspx?reportId=24272.

  38. Schuiling RD (2013) Olivine: a supergreen fuel. Energy Sustain Soc 3(18):1–4

    Google Scholar 

  39. Schuiling R (2001) Olivine, the miracle mineral. Mineral J 23(5/6):81–83

    Google Scholar 

  40. ASTM International (2006) Standard practice for classification of soils for engineering purposes (unified soil classification system), vol. D2487. ASTM Standard Guide, Philadelphia, pp 1–5

    Google Scholar 

  41. Phair J, Van Deventer J (2001) Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Mineral Eng 14(3):289–304

    Article  Google Scholar 

  42. D Bondar, CJ Lynsdale, NB Milestone, N Hassani, AA Ramezanianpour (2011) Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cem Concr Compos 33(2):251–260

    Article  Google Scholar 

  43. British Standard Institution, British Standard Methods of test for Soils for civil engineering purposes. Part 7: Shear strength tests (total stress). BS 1377-7:1990, No. August, 1999

  44. Temuujin J, van Riessen A, Williams R (2009) Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J Hazard Mater 167(1–3):82–88

    Article  Google Scholar 

  45. Winnefeld F, Leemann A, Lucuk M, Svoboda P, Neuroth M (2010) Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials. Constr Build Mater 24(6):1086–1093

    Article  Google Scholar 

  46. Yip CK, Van Deventer JSJ (2003) Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. J Mater Sci 38(18):3851–3860

    Article  Google Scholar 

  47. Salih MA, Abang Ali AA, Farzadnia N (2014) Characterization of mechanical and microstructural properties of palm oil fuel ash geopolymer cement paste. Constr Build Mater 65:592–603

    Article  Google Scholar 

  48. Fasihnikoutalab MH, Asadi A, Unluer C, Huat BK, Ball RJ, Pourakbar S (2017) Utilization of alkali-activated olivine in soil stabilization and the effect of carbonation on unconfined compressive strength and microstructure. J Mater Civ Eng. doi:10.1061/(ASCE)MT.1943-5533.0001833

    Google Scholar 

  49. Yi Y, Liska M, Unluer C, Al-Tabbaa A (2013) Carbonating magnesia for soil stabilization. Can Geotech J 50(8):899–905

    Article  Google Scholar 

  50. Zhu J, Ye N, Liu J, Yang J (2013) Evaluation on hydration reactivity of reactive magnesium oxide prepared by calcining magnesite at lower temperatures. Ind Eng Chem Res 52(19):6430–6437

    Article  Google Scholar 

  51. Rattanasak U, Chindaprasirt P (2009) Influence of NaOH solution on the synthesis of fly ash geopolymer. Mineral Eng 22(12):1073–1078

    Article  Google Scholar 

  52. Duxson P, Provis JL, Lukey GC, van Deventer JSJ (2007) The role of inorganic polymer technology in the development of ‘green concrete’. Cem Concr Res 37(12):1590–1597

    Article  Google Scholar 

  53. Fernández-Jiménez A, Palomo A, Criado M (2005) Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem Concr Res 35(6):1204–1209

    Article  Google Scholar 

  54. Wang SD, Scrivener KL (2003) 29Si and 27Al NMR study of alkali-activated slag. Cem Concr Res 33:769–774

    Article  Google Scholar 

  55. Fernández-Jiménez A, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cem Concr Res 35(10):1984–1992

    Article  Google Scholar 

  56. Zhang M, El-Korchi T, Zhang G, Liang J, Tao M (2014) Synthesis factors affecting mechanical properties, microstructure, and chemical composition of red mud–fly ash based geopolymers. Fuel 134:315–325

    Article  Google Scholar 

  57. Komljenović M, Bascarević Z, Bradić V (2010) Mechanical and microstructural properties of alkali-activated fly ash geopolymers. J Hazard Mater 181(1–3):35–42

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely give thanks to the University Putra Malaysia and Fundamental Research Grant Scheme (FRGS/1/2015/TK01/ UPM/01/2) entitled ‘Sustainable soil stabilisation by olivine and its mechanisms’ funded by the Ministry of Higher Education in Malaysia (Project ID 93474–135837) for financial support of this research. Moreover, authors would like to extend their sincerest thanks and appreciation to Dr. Gabriele Kociok-Köhn from University of Bath, Department of Chemistry who helped us accomplish of XRD analysis and Dr. Afshin Asadi from University Putra Malaysia for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hamed Fasihnikoutalab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fasihnikoutalab, M.H., Pourakbar, S., Ball, R.J. et al. The Effect of Olivine Content and Curing Time on the Strength of Treated Soil in Presence of Potassium Hydroxide. Int. J. of Geosynth. and Ground Eng. 3, 12 (2017). https://doi.org/10.1007/s40891-017-0089-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40891-017-0089-3

Keywords

Navigation