Skip to main content
Log in

Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I—Low Si/Al ratio systems

  • Advances in Geopolymer Science & Technology
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Initial geopolymeric reaction processes governing dissolution of solid aluminosilicate particles in alkali solutions have been investigated using conventional experimental techniques, and the data analysed by speciation predictions of the partial charge model (PCM). For metakaolin powders activated with 5.0 M NaOH, solid-state nuclear magnetic resonance (NMR) spectra disclose the existence of monomeric [Al(OH)4] species after two hours of dissolution, consistent with PCM predictions. However, no equivalent monomeric silicate species were observed for 5.0–10.0 M NaOH activator solutions characteristic of systems with nominal Si/Al ≤ 1. The apparent absence of monomeric silicate species suggest rapid condensation of silicate units with [Al(OH)4] to generate aluminosilicate species, as indicated by the evolution of the shoulder at around −87 ppm in the 29Si NMR spectra. Of the two possible stable silicate species [SiO2(OH)2]2− and [SiO(OH)3], the latter appears most likely to condense with [Al(OH)4] to produce aluminosilicate oligomers, from which larger oligomers subsequently form through further condensation with [Al(OH)4] leading to a gradual build up of aluminosilicate networks and a lowering of system alkalinity. This dissolution and hydrolysis sequence at the early stages of synthesis suggests a reaction path wholly consistent with predictions of the partial charge model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Davidovits J (1982) US Patent 4349386

  2. Davidovits J, Orlinski J (eds) (1988) Proceedings of Geopolymer International Conference, Compiegne, France

  3. Davidovits J, Davidovits R, James C (eds) (1999) Proceedings of Geopolymer International Conference, Saint-Quentin, France. ISBN 2-902933-14-2

  4. Lukey G (ed) (2002) Proceedings of Geopolymer International Conference, Melbourne, Australia. ISBN 0-97502242-0-5

  5. Davidovits J, Davidovics M, Davidovits N (1994) US Patent 5342595

  6. Barbosa V, Mackenzie K, Thaumaturgo C (2000) Int J Inorg Mater 2:309

    Article  CAS  Google Scholar 

  7. Lowenstein W (1954) Am Mineral 39:92

    Google Scholar 

  8. Provis JL, Duxson P, Lukey GC, Van Deventer JSJ (2005) Chem Mater 17(11):2976

    Article  CAS  Google Scholar 

  9. Palomo A, Glasser F (1992) Br Ceram Trans J 91:107

    CAS  Google Scholar 

  10. Steveson M, Sagoe-Crentsil K (2005) J Mater Sci 40:2023

    Article  CAS  Google Scholar 

  11. Davidovits J (1988) in Proceedings of geopolymer’88, p 25

  12. Rahier H, Van Mele B, Biesemans M, Wastiels J, Wu X (1996) J Mater Sci 31:71

    Article  CAS  Google Scholar 

  13. Rahier H, Simons W, Van Mele B, Wastiels J (1997) J Mater Sci 32:2237

    Article  CAS  Google Scholar 

  14. Xu H, Van Deventer JSJ (1999) in Proceedings of Geopolymer ‘99, Saint-Quentin, France, p 43

  15. Weng L, Sagoe-Crentsil K, Brown T, Song S (2005) Mater Sci Eng B: Solid-State Mater Adv Technol 117(2):163

    Google Scholar 

  16. Henry M, Jolivet J, Livage J (1992) J Struct Bond 77:153

    Article  CAS  Google Scholar 

  17. Sanderson RT (1951) Science 114:670

    Article  CAS  Google Scholar 

  18. Livage J, Henry M (1988) In: Mackenzie JD, Ulrich DR (eds) Ultrastructure processing of advanced ceramics. John Wiley& Sons, New York, p 183

  19. Livage J, Henry M, Sanchez C (1988) In: Sol–gel chemistry of transition metal oxides. Progress in solid state chemistry, pp 259–341

  20. Livage J, Sanchez C (1992) J Non-Cryst Solids 145:11

    Article  CAS  Google Scholar 

  21. Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry: principles of structure and reactivity, 4th edn. Harper & Collins College Pub. Inc., New York

    Google Scholar 

  22. Henry M, (2002) Chem Phys Chem 3:561

    CAS  Google Scholar 

  23. de Jong BHWS, Brown GE (1980) Geochimica et Cosmochimica Acta 44(3):491

    Article  Google Scholar 

  24. Swaddle T (2001) Coordinat Chem Rev 219–221:665

    Article  Google Scholar 

  25. Zhdanov L (1968) Molecular sieves. Society of Chemical Industry, London, UK, p 62

    Google Scholar 

  26. Barrer R (1982) Hydrothermal chemistry of zeolites. Academic Press, London, UK

    Google Scholar 

  27. Glasser L, Lachowski E (1980) J Chem Soc Dalton Trans 3:393

    Article  Google Scholar 

  28. Glasser L, Harvey G (1984) J Chem Soc Chem Commun 16:1250

    Article  Google Scholar 

  29. Ray N, Plaisted R (1983) J Chem Soc Dalton Trans 3:475

    Article  Google Scholar 

  30. Barker P (1987) Minispec applications note. Bruker Optics Inc, MA USA, p 30

    Google Scholar 

  31. Faust B, Labiosa W, Dai K, Macfall J, Browne B, Ribeiro A, Richter D (1995) Geochimica et Cosmochimica Acta 59:2651

    Article  CAS  Google Scholar 

  32. Alonso S, Palomo A (2001) Mater Lett 47:55

    Article  CAS  Google Scholar 

  33. Granizo ML, Blanco-Valera MT (1998) J Thermal Anal 52:957

    Article  CAS  Google Scholar 

  34. Robens E, Benzler B, Buchel G, Reichert H, Schumacher K (2002) Cem Concr Res 32:87

    Article  CAS  Google Scholar 

  35. Nocun-Wczelik W (2001) J Thermal Anal Calorimet 65:613

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The assistance of our colleagues Dr Iko Burgar and Dr Puyam Singh with solid-state NMR experiments is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sagoe-Crentsil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, L., Sagoe-Crentsil, K. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I—Low Si/Al ratio systems. J Mater Sci 42, 2997–3006 (2007). https://doi.org/10.1007/s10853-006-0820-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0820-2

Keywords

Navigation