Skip to main content
Log in

First-Order Approximations of Dynamic Material Strengths for the Ballistic Perforation of Aluminum Target Plates

  • Research Paper
  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

Perforation of aluminum alloy target plates by armor-piercing rounds have been shown to follow the cavity expansion scaling law, while fragment-simulating projectiles follow a shear-plugging scaling law. In both models, experimental compressive stress–strain data is needed to derive their respective material strength parameters, which are not always available. By comparison, modified Ludwik plasticity parameters are more widely available in existing literature for the aluminum alloys of interest in armor applications. We show that the maximum compressive strengths may be approximated using a fixed true strain value across 33 aluminum alloys. A simple linear relation is further established between the maximum compressive strength and the cavity expansion strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Recht RF, Ipson TW (1963) Ballistic perforation dynamics. J Appl Mech 30:384–390. https://doi.org/10.1115/1.3636566

    Article  Google Scholar 

  2. Backman ME, Goldsmith W (1978) The mechanics of penetration of projectiles into targets. Int J Eng Sci 16:1–99. https://doi.org/10.1016/0020-7225(78)90002-2

    Article  Google Scholar 

  3. Corran RSJ, Shadbolt PJ, Ruiz C (1983) Impact loading of plates—an experimental investigation. Int J Impact Eng 1:3–22. https://doi.org/10.1016/0734-743X(83)90010-6

    Article  Google Scholar 

  4. Forrestal MJ, Rosenberg Z, Luk VK, Bless SJ (1987) Perforation of aluminum plates with conical-nosed rods. J Appl Mech 54:230–232. https://doi.org/10.1115/1.3172966

    Article  Google Scholar 

  5. Woodward RL (1987) A structural model for thin plate perforation by normal impact of blunt projectiles. Int J Impact Eng 6:129–140. https://doi.org/10.1016/0734-743X(87)90015-7

    Article  Google Scholar 

  6. Rosenberg Z, Kositski R, Dekel E (2016) On the perforation of aluminum plates by 7.62 mm APM2 projectiles. Int J Impact Eng 97:79–86. https://doi.org/10.1016/j.ijimpeng.2016.06.003

    Article  Google Scholar 

  7. Gooch WA, Burkins MS, Squillacioti RJ (2007) Ballistic testing of commercial aluminum alloys and alternate processing techniques to increase the availability of aluminum armor. In: 23rd International symposium on ballistics, 2007, Tarragona, Spain, pp 981–988

  8. Cheeseman B, Gooch W, Burkins MS (2008) Ballistic evaluation of aluminum 2139-T8. In: Proceedings of the 24th international symposium on ballistics, New Orleans, Louisiana, 2008, p 651. https://doi.org/10.1016/j.ifacol.2015.12.242

  9. Dannemann S, Chocron KA, Anderson Jr CE (2010) Comparison of mechanical and constitutive response for five aluminum alloys for armor applications.

  10. Gallardy D (2012) Ballistic evaluation of 7085 aluminum (ARL-TR-5952). Aberdeen Proving Ground, Aberdeen

    Book  Google Scholar 

  11. Gallardy D (2015) Ballistic evaluation of 6055 aluminum (ARL-MR-0904). Aberdeen Proving Ground, Aberdeen

    Book  Google Scholar 

  12. Gallardy D (2016) Ballistic evaluation of 2060 aluminum (ARL-MR-0930). Aberdeen Proving Ground, Aberdeen

    Google Scholar 

  13. Gallardy D (2017) Ballistic evaluation of 7056 aluminum (ARL-TR-7947). Aberdeen Proving Ground, Aberdeen

    Google Scholar 

  14. Rosenberg Z, Forrestal MJ (1988) Perforation of aluminum plates with conical-nosed rods—additional data and discussion. J Appl Mech 55:236–238. https://doi.org/10.1115/1.3173639

    Article  Google Scholar 

  15. Forrestal MJ, Luk VK, Brar NS (1990) Perforation of aluminum armor plates with conical-nose projectiles. Mech Mater 10:97–105. https://doi.org/10.1016/0167-6636(90)90020-G

    Article  Google Scholar 

  16. Piekutowski AJ, Forrestal MJ, Poormon KL, Warren TL (1996) Perforation of aluminum plates with ogive-nose steel rods at normal and oblique impacts. Int J Impact Eng 18:877–887. https://doi.org/10.1016/S0734-743X(96)00011-5

    Article  Google Scholar 

  17. Forrestal MJ, Warren TL (2009) Perforation equations for conical and ogival nose rigid projectiles into aluminum target plates. Int J Impact Eng 36:220–225. https://doi.org/10.1016/j.ijimpeng.2008.04.005

    Article  Google Scholar 

  18. Skube S (2009) Large strain compression testing of ductile materials at quasi-static and dynamic strain rates. Dissertation, Purdue University

  19. Forrestal MJ, Romero LA (2007) Comment on “Perforation of aluminum plates with ogive-nose steel rods at normal and oblique impacts” (Int J Impact Eng 1996; 18: 877–887). Int J Impact Eng 34:1962–1964. https://doi.org/10.1016/j.ijimpeng.2006.12.003

    Article  Google Scholar 

  20. Børvik T, Forrestal MJ, Warren TL (2010) Perforation of 5083–H116 aluminum armor plates with ogive-nose rods and 7.62 mm APM2 bullets. Exp Mech 50:969–978. https://doi.org/10.1007/s11340-009-9262-5

    Article  CAS  Google Scholar 

  21. Forrestal MJ, Børvik T, Warren TL (2010) Perforation of 7075–T651 aluminum armor plates with 7.62 mm APM2 bullets. Exp Mech 50:1245–1251. https://doi.org/10.1007/s11340-009-9328-4

    Article  CAS  Google Scholar 

  22. Chen X, Gao Y, He L (2013) Analysis on the perforation of ductile metallic plates by APM2 bullets. Int J Prot Struct 4:65–78. https://doi.org/10.1260/2041-4196.4.1.65

    Article  Google Scholar 

  23. Ryan S, Cimpoeru SJ (2015) An evaluation of the Forrestal scaling law for predicting the performance of targets perforated in ductile hole formation. In: 3rd International conference on protective structures, 2015

  24. Ryan S, Nguyen LH, Gallardy D, Cimpoeru SJ (2018) A scaling law for predicting the ballistic limit of aluminium alloy targets perforated in ductile hole formation. Int J Impact Eng 116:34–50. https://doi.org/10.1016/j.ijimpeng.2018.02.005

    Article  Google Scholar 

  25. Forrestal MJ, Lim B, Chen W (2018) A scaling law for APM2 bullets and aluminum armor plates. Exp Mech. https://doi.org/10.1007/s11340-018-00442-7

    Article  Google Scholar 

  26. Guo Z, Forrestal MJ, Martinez-Morales S, Chen W (2019) Perforation of aluminum armor plates with fragment-simulating projectiles. J Dyn Behav Mater. https://doi.org/10.1007/s40870-019-00200-3

    Article  Google Scholar 

  27. Ramesh KT (2008) High strain rate and impact experiments. In: Handbook of experimental solid mechanics. Springer, New York, p 874

  28. Cao B, Shaeffer M, Cadel D, Ramesh KT, Prasad S (2018) An analysis of strengthening mechanisms and rate-dependence in a high strength aluminum alloy. J Dyn Behav Mater 4:6–17. https://doi.org/10.1007/s40870-017-0136-0

    Article  Google Scholar 

  29. Chen W, Guo Z (2019), A predictive non-dimensional scaling law for the plate perforation of several aluminum alloys by fragment-simulating projectiles, pp 356–361. https://doi.org/10.1115/hvis2019-119

  30. Jones TL, Placzankis BE (2016) The examination of the aluminum alloy 7017 as a replacement for the aluminum alloy 7039 in lightweight armor systems (ARL-TR-7727). Aberdeen Proving Ground, Aberdeen

    Google Scholar 

  31. Fras T, Colard L, Lach E, Rusinek A, Reck B (2015) Thick AA7020-T651 plates under ballistic impact of fragment-simulating projectiles. Int J Impact Eng 86:336–353. https://doi.org/10.1016/j.ijimpeng.2015.08.001

    Article  Google Scholar 

  32. Rodriguez-Millan M, Garcia-Gonzalez D, Rusinek A, Arias A (2018) Influence of stress state on the mechanical impact and deformation behaviors of aluminum alloys. Metals (Basel) 8:520. https://doi.org/10.3390/met8070520

    Article  CAS  Google Scholar 

  33. Masri R (2014) The effect of adiabatic thermal softening on specific cavitation energy and ductile plate perforation. Int J Impact Eng 68:15–27. https://doi.org/10.1016/j.ijimpeng.2013.12.008

    Article  Google Scholar 

  34. Rodríguez-Millán M, Vaz-Romero A, Rusinek A, Rodríguez-Martínez JA, Arias A (2014) Experimental study on the perforation process of 5754–H111 and 6082–T6 aluminium plates subjected to normal impact by conical, hemispherical and blunt projectiles. Exp Mech 54:729–742. https://doi.org/10.1007/s11340-013-9829-z

    Article  CAS  Google Scholar 

  35. Holmen JK, Johnsen J, Jupp S, Hopperstad OS, Børvik T (2013) Effects of heat treatment on the ballistic properties of AA6070 aluminium alloy. Int J Impact Eng 57:119–133. https://doi.org/10.1016/j.ijimpeng.2013.02.002

    Article  Google Scholar 

  36. Forrestal MJ, Børvik T, Warren TL, Chen W (2013) Perforation of 6082–T651 aluminum plates with 7.62 mm APM2 bullets at normal and oblique impacts. Exp Mech 54:471–481. https://doi.org/10.1007/s11340-013-9817-3

    Article  CAS  Google Scholar 

  37. Forrestal M, Luk V, Rosenberg Z, Brar N (1992) Penetration of 7075–T651 aluminum targets with ogival-nose rods. Int J Solids Struct 29(14–15):1729–1736

    Article  Google Scholar 

  38. Pare V, Puthoor P, Jonnalagadda KN, Murty SVSN (2017) High temperature dynamic characterization of an aluminum alloy with modified Kolsky bar. Procedia Eng 173:844–850. https://doi.org/10.1016/j.proeng.2016.12.123

    Article  CAS  Google Scholar 

  39. Zhang X, Li H, Li H, Gao H, Gao Z, Liu Y, Liu B (2008) Dynamic property evaluation of aluminum alloy 2519A by split Hopkinson pressure bar. Trans Nonferr Met Soc China 18:1–5. https://doi.org/10.1016/S1003-6326(08)60001-1

    Article  Google Scholar 

  40. Pérez-Bergquist SJ, Rusty Gray GT, Cerreta EK, Trujillo CP, Pérez-Bergquist A (2011) The dynamic and quasi-static mechanical response of three aluminum armor alloys: 5059, 5083 and 7039. Mater Sci Eng A 528:8733–8741. https://doi.org/10.1016/j.msea.2011.08.046

    Article  CAS  Google Scholar 

  41. Huskins EL, Cao B, Ramesh KT (2010) Strengthening mechanisms in an Al–Mg alloy. Mater Sci Eng A 527:1292–1298. https://doi.org/10.1016/j.msea.2009.11.056

    Article  CAS  Google Scholar 

  42. Liu S, Wang S, Ye L, Deng Y, Zhang X (2016) Flow behavior and microstructure evolution of 7055 aluminum alloy impacted at high strain rates. Mater Sci Eng A 677:203–210. https://doi.org/10.1016/j.msea.2016.09.047

    Article  CAS  Google Scholar 

  43. Bhattacharyya JJ, Agnew SR, Lee MM, Whittington WR, El Kadiri H (2017) Measuring and modeling the anisotropic, high strain rate deformation of Al alloy, 7085, plate in T711 temper. Int J Plast 93:46–63. https://doi.org/10.1016/j.ijplas.2017.03.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zherui Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Geometries and Properties of Armor-Piercing Rounds and Fragment-Simulating Projectiles

Appendix: Geometries and Properties of Armor-Piercing Rounds and Fragment-Simulating Projectiles

See Figs. 6 and 7.

Fig. 6
figure 6

Dimensions of steel-core armor-piercing rounds. Projectile masses are 10.8, 45.9, and 63.2 g for the 7.62-mm APM2, 12.7-mm APM2, and 14.5-mm BS41 respectively

Fig. 7
figure 7

Fragment-simulating projectiles (FSPs) made from 4340 Rc 30 steel. Projectile masses are 13.4 and 53.8 g for the 12.7- and 20-mm FSP respectively

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Chen, W. First-Order Approximations of Dynamic Material Strengths for the Ballistic Perforation of Aluminum Target Plates. J. dynamic behavior mater. 7, 566–574 (2021). https://doi.org/10.1007/s40870-021-00304-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-021-00304-9

Keywords

Navigation