Skip to main content
Log in

Nonlinear optimal control of autonomous submarines’ diving

  • Original Paper
  • Published:
Marine Systems & Ocean Technology Aims and scope Submit manuscript

Abstract

The article presents a nonlinear H-infinity (optimal) control approach for the problem of the control of the depth and heading angle of an autonomous submarine. This is a multivariable nonlinear control problem and its solution allows for precise underwater navigation of the submarine. The submarine’s dynamic model undergoes approximate linearization around a temporary equilibrium that is recomputed at each iteration of the control algorithm. The linearization procedure is based on Taylor series expansion and on the computation of the submarine’s model Jacobian matrices. For the approximately linearized model, the optimal control problem is solved through the design of an H-infinity feedback controller. The computation of the controller’s gain requires the solution of an algebraic Riccati equation, which is performed at each time-step of the control method. The global stability of the control scheme is proven through Lyapunov analysis. First, it is demonstrated that for the submarine’s control loop, the H-infinity tracking performance criterion holds. Moreover, under moderate conditions, it is shown that the control scheme is globally asymptotically stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.W. Lee, S.N. Singh, Multi-input submarine control via \(L_2\) adaptive feedback despite uncertainties. J. Syst. Control Eng. 228(5), 330–347 (2014)

    Google Scholar 

  2. L. Lapierre, D. Saetanto, Nonlinear path-following control of an AUV. Ocean Eng. 34, 1734–1744 (2007)

    Article  Google Scholar 

  3. B. Li, T. Su, Nonlinear heading control of an autonomous underwater vehicle with internal actuators. Ocean Eng. 125, 103–112 (2016)

    Article  Google Scholar 

  4. X. Xiong, L. Lapierre, B. Jouvencel, Smooth transition of AUV motion control: from fully actuated to underactuated configuration. Robot. Auton. Syst. 67, 14–22 (2015)

    Article  Google Scholar 

  5. P. Batista, C. Silvestre, P. Oliveira, A sensor-based controller for homing of underactuated AUVs. IEEE Trans. Robot. 25(3), 701–716 (2009)

    Article  Google Scholar 

  6. J.B. Refsnes, A.J. Sorensen, K.Y. Petersen, Model-based output feedback control of slender-body underactuated AUVs: theory and experiments. IEEE Trans. Control Syst. Technol. 16(5), 930–946 (2008)

    Article  Google Scholar 

  7. N. Fischer, D. Hughes, P. Walters, E.M. Swartz, W.E. Dixon, Nonlinear RISE-based control of an autonomous underwater vehicle. IEEE Trans. Robot. 30(4), 845–852 (2014)

    Article  Google Scholar 

  8. K.Y. Petersen, O. Egeland, Time-varying exponential stabilization of the position and attitude of an underactuated autonomous underwater vehicle. IEEE Trans. Autom. Control 44(1), 112–115 (1999)

    Article  MathSciNet  Google Scholar 

  9. G.G. Rigatos, S.G. Tzafestas, Adaptive fuzzy control for the ship steering problem. J. Mechatron. 16(6), 479–489 (2006)

    Article  Google Scholar 

  10. G. Rigatos, G. Raffo, Input–Output Linearizing Control of the Underactuated Hovercraft Using the Derivative-Free Nonlinear Kalman Filter, Unmanned Systems (World Scientific, Singapore, 2015)

    Google Scholar 

  11. G.G. Rigatos, Sensor fusion-based dynamic positioning of ships using extended Kalman and particle filtering. Robotica 31(3), 389–403 (2013)

    Article  MathSciNet  Google Scholar 

  12. L.J. Zhang, X. Qi, Y.J. Pang, Adaptive output feedback control based on DFRNN for AUV. Ocean Eng. 36, 716–722 (2009)

    Article  Google Scholar 

  13. J.H. Li, P.M. Lee, Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle. Ocean Eng. 32, 2165–2181 (2005)

    Article  Google Scholar 

  14. G. Rigatos, P. Siano, Flatness-based adaptive fuzzy control of autonomous submarines. J. Intell. Ind. Syst. 1(3), 187–200 (2015)

    Article  Google Scholar 

  15. L. Lapierre, Robust diving control of an AUV. Ocean Eng. 36, 92–104 (2009)

    Article  Google Scholar 

  16. M. Sharkar, S. Nandy, S. Vadali, S. Roy, S. Shome, Modelling and simulation of a robust energy efficient AUV controller. Math. Comput. Simul. 121, 34–47 (2016)

    Article  MathSciNet  Google Scholar 

  17. C. Shen, Y. Shi, B. Buckham, Trajectory tracking control of an autonomous underwater vehicle using Lyapunov-based model predictive control. IEEE Trans. Ind. Electron. 65(5), 5796–5805 (2018)

    Article  Google Scholar 

  18. X. Zheng, R. Sun, M. Chen, J. Zhao, H. Fu, Horizontal motion control for variable vector propeller of submarine based on pitch angle varying. In: Proceedings of the 36th Chinese Control Conference, Dalian, China, July (2017)

  19. Y. Li, Y. Li, Q. Wu, Design for three-dimensional stabilization control of underactuated autonomous underwater vehicles. Ocean Eng. 150, 327–336 (2018)

    Article  Google Scholar 

  20. E. Campos, J. Monroy, H. Abundis, A. Chemori, V. Creuz, J. Torres, A nonlinear controller based on saturation functions with variable parameters to stabilize an AUV. Int. J. Nav. Arch. Ocean Eng. (2019). https://doi.org/10.1016/j.ijnaoe.2018.04.002

    Article  Google Scholar 

  21. L. Mohammadi, A. Alfi, B. Xu, Robust bilateral control for state convergence in uncertain teleoperation systems with time-varying delay: a guaranteed cost control design. Nonlinear Dyn. 88(2), 1413–1426 (2017)

    Article  Google Scholar 

  22. C. Yu, X. Xiang, P. Lapierre, Q. Zhang, Nonlinear guidance and fuzzy control for three-dimensional path following of an underactuated autonomous underwater vehicle. Ocean Eng. 146, 457–467 (2017)

    Article  Google Scholar 

  23. C. Shen, Y. Shi, B. Buckham, Nonlinear model predictive control for trajectory tracking of an AUV: a distributed implementation, 2016 . In: IEEE 55th Conference on Decision and Control, Las Vegas, USA (2016)

  24. Z. Ma, J. Hu, J. Feng, A. Liu, Diving adaptive position tracking control for underwater vehicles. IEEE Access. 7, 24602–24610 (2019)

    Article  Google Scholar 

  25. W. Gan, D. Zhu, Z. Hu, X. Shi, L. Yang, Y. Chen, Model Predictive Adaptive Constraint Tracking Control for Underwater Vehicles. IEEE Transactions on Industrial Electronics (2019)

  26. M. Chyba, T. Haberkorn, R. Smith, S. Choi, Design and implementation of time efficient trajectories for autonomous underwater vehicles. Ocean Eng. 35, 63–76 (2006)

    Article  Google Scholar 

  27. Q. Yang, H. Sun, G. Tang, D. Gao, Optimal internal model control with specified decay time rate for AUV under irregular move forces. In: Proceedings of the 35th Chinese Control Conference, Changdu, China, July (2016)

  28. J. Biggs, W. Hokkerbaum, Optimal kinematic control of an autonomous underwater vehicle. IEEE Trans. Automat. Control 54(7), 1623–1626 (2009)

    Article  MathSciNet  Google Scholar 

  29. E. Berhang, K. Pettersen, A. Pavlov, An optimal guidance scheme for cross-track control of underactuated underwater vehicles. In: IEEE MED 2016, 14th Mediterranean Conference on Control and Automation, July (2006)

  30. L. Moreira, C. Gueda Soares, \(H_2\) and \(H_\infty \) design for diving and course control of an autonomous underwater vehicle in presence of waves. IEEE J. Ocean. Eng. 33(2), 69–88 (2008)

    Article  Google Scholar 

  31. E. Liceaga-Castro, G.M. van der Molen, Submarine \(H_\infty \) depth control under wave disturbances. IEEE Trans. Control Syst. Technol. 3(3), 338–346 (1995)

    Article  Google Scholar 

  32. G. Rigatos, P. Siano, N. Zervos, A nonlinear H-infinity control approach for autonomous navigation of underactuated vessels. In: 16th International Conference on Control, Automation and Systems, Gyeongju, Octber, Korea (2016)

  33. G. Rigatos, P. Siano, A new nonlinear H-infinity feedback control approach to the problem of autonomous robot navigation. J. Intell. Ind. Syst. 1(3), 179–186 (2015)

    Article  Google Scholar 

  34. G. Rigatos, P. Siano, P. Wira, F. Profumo, Nonlinear H-infinity feedback control for asynchronous motors of electric trains. J. Intell. Ind. Syst. 1(2), 85–98 (2015)

    Article  Google Scholar 

  35. M. Basseville, I. Nikiforov, Detection of Abrupt Changes: Theory and Applications (Prentice-Hall, Upper Saddle River, 1993)

    MATH  Google Scholar 

  36. G.J. Toussaint, T. Basar, F. Bullo, \(H_{\infty }\) optimal tracking control techniques for nonlinear underactuated systems. In: Proceedings of IEEE CDC 2000, 39th IEEE Conference on Decision and Control, Sydney, Australia, Dec (2000)

  37. G. Rigatos, Q. Zhang, Fuzzy model validation using the local statistical approach. Fuzzy Sets Syst. 60(7), 882–904 (2009)

    Article  MathSciNet  Google Scholar 

  38. G.G. Rigatos, Modelling and Control for Intelligent Industrial Systems: Adaptive Algorithms in Robotcs and Industrial Engineering (Springer, New York, 2011)

    Book  Google Scholar 

  39. G. Rigatos, Nonlinear Control and Filtering Using Differential Flatness Approaches: Applications to Electromechanicsl Systems (Springer, New York, 2015)

    Book  Google Scholar 

  40. G. Rigatos, K. Busawon, Robotic Manipulators and Vehicles: Control, Estimation and Filtering (Springer, Berlin, 2018)

    Book  Google Scholar 

  41. B.P. Gibbs, Advanced Kalman Filtering, Least Squares and Modelling: A Practical Handbook (Wiley, New York, 2011)

    Book  Google Scholar 

  42. D. Simon, A game theory approach to constrained minimax state estimation. IEEE Trans. Signal Process. 54(2), 405–412 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rigatos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigatos, G., Siano, P., Zouari, F. et al. Nonlinear optimal control of autonomous submarines’ diving. Mar Syst Ocean Technol 15, 57–69 (2020). https://doi.org/10.1007/s40868-019-00070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40868-019-00070-3

Keywords

Navigation