Skip to main content
Log in

An Overview of Fibre-Reinforced Composites for Musical Instrument Soundboards

  • Original Paper
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

Traditionally the material of construction of many musical instruments has been limited to wood. The unique mechanical and acoustic properties of wood make it the material of choice for making musical instruments. In recent years, wood for musical instruments is depleting, becoming more expensive and is of less acceptability due to environmental changes. This has resulted in most musical instrument builders searching for alternative materials to traditional musical instruments. This paper presents an important overview of recent research and developments and presents an initiative focusing on fibre reinforced composites as an alternative material for stringed instruments. Fibre composites are emerging as a competitive alternative material. Composite instruments has potential advantages for players concerned with functionality, sound, choreography and cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. von Hornbostel, E.M., Sachs, C.: Classification of musical instruments: Translated from the original German by Anthony Baines, Klaus P, and Wachsmann. Galpin Soc J 3–29 (1961)

  2. Wegst, U.G.K.: Wood for sound. Am. J. Bot. 93, 1439–1448 (2006)

    Article  Google Scholar 

  3. Wegst, U.G.K.: Bamboo and wood in musical instruments. Annu. Rev. Mater. Res. 38, 323–349 (2008)

    Article  Google Scholar 

  4. Ono, T., Norimoto, M.: Study on Young’s modulus and internal friction of wood in relation to the evaluation of wood for musical instruments. Jpn. J. Appl. Phys. 22, 611–614 (1983)

    Article  Google Scholar 

  5. Ono, T., Norimoto, M.: On physical criteria for the selection of wood for soundboards of musical instruments. Rheol. Acta 23, 652–656 (1984)

    Article  Google Scholar 

  6. Holz, D.: Acoustically important properties of xylophone-bar materials: can tropical woods be replaced by European species? Acta Acust. United Acust. 82, 878–884 (1996)

    Google Scholar 

  7. Holz, D.: Tropical hardwoods used in musical instruments-can we substitute them by temperate zone species? Holzforschung 50, 121–129 (1996)

    Article  Google Scholar 

  8. Fletcher, N.: Materials and musical instruments. Acoust. Aust. 40, 130–133 (2012)

    Google Scholar 

  9. Besnainou, C.: From wood mechanical measurements to composite materials for musical instruments: new technology for instrument makers. MRS Bull. 03, 34–36 (1995)

    Google Scholar 

  10. Schleske, M.: Speed of sound and damping of spruce in relation to the direction of grains and rays. J. CAS 1(6), 16–20 (1990)

    Google Scholar 

  11. Barlow, C.Y.: Materials selection for musical instruments. In: Proceedings of IOA, Barlow, 69–78 (1997)

  12. Douau, D.: Evaluation des propriétés acoustiques, mécaniques et structurelles des bois de tables d’harmonie de la guitare; leurs influences sur le timbre de l’instrument. University of Maine, Thesis in Acoustics (1986)

  13. Bremaud, I.: Acoustical properties of wood in string instruments soundboards and tuned idiophones: biological and cultural diversity. J. Acoust. Soc. Am. 131, 807–818 (2012)

    Article  Google Scholar 

  14. Haines, D.W.: On musical instrument wood. Catgut Acoust. Soc. Newsl. 1, 23–32 (1979)

    Google Scholar 

  15. Schelleng, J.C.: The violin as a circuit. J. Acoust. Am. 35, 326–338 (1963)

    Article  Google Scholar 

  16. Woodhouse, J.: The acoustics of the violin: a review. Repo. Prog. Phys. (2014). doi:10.1088/0034-4885/77/11/115901

  17. Yoshikawa, S.: Acoustical classification of woods for string instruments. J. Acoust. Am. 122, 568–573 (2007)

    Article  Google Scholar 

  18. Waltham, C.: A balsa violin. Am. J. Phys. 77, 30–35 (2009)

    Article  Google Scholar 

  19. Mehdi Jalili, M., Yahya Mousavi, S., Pirayeshfar, A.S.: Investigating the acoustical properties of carbon fiber, glass fiber, and hemp fiber-reinforced polyester composites. Polym. Compos. (2014). doi:10.1002/pc.22872

  20. Besnainou, C., Douau, D., Ponsot, B.: La conception et la réalisation d’un composite pour la table d’harmonie des instruments de musique. In: Pravica P., Drakulic G., Totic B. (eds.) Proceedings of the 13th International Congress on Acoustics, ICA, Novi Beograd, vol. 3, pp. 91–93 (1989)

  21. Besnainou, C., Douau, D., Ponpost, B.: Tables en fibres composites pour instruments de musique CNRS Patent no 86 06 996. http://www.google.cf/patents/DE3738459A1?cl=en&hl=fr (1989)

  22. Besnainou, C., Vaiedelich, S.: Bow musical instrument made of composite material. J. Acoust. Soc. Am. 93, 3542 (1993)

    Article  Google Scholar 

  23. Besnainou, C., Vaiedelich, S.: Instrument de musique à archet en composite, CNRS Patent no 89 09 048. http://www.google.fr/patents/EP0433430B1?cl=en (1995)

  24. McIntyre, M.E., Woodhouse, J.: On measuring the elastic and damping constants of orthotropic sheet materials. Acta Metall. 36, 1397–1416 (1988)

    Article  Google Scholar 

  25. Ono, T., Miyakoshi, S., Watanabe, U.: Acoustic characteristics of unidirectionally fibre-reinforced polyurethane foam composites for musical instrument soundboards. Acoust. Sci. Technol. 23, 135–142 (2002)

    Article  Google Scholar 

  26. Ono, T., Isomura, D.: Acoustic characteristics of carbon fibre-reinforced synthetic wood for musical instrument soundboards. Acoust. Sci. Technol. 25, 475–477 (2004)

    Article  Google Scholar 

  27. Ono, T., Okuda, A.: Acoustic characteristics of guitars with a top board of carbon fiber-reinforced composites. Acoust. Sci. Technol. 28, 442–443 (2007)

    Article  Google Scholar 

  28. Philips, S.: Bio-composite material applications to musical instruments. Thesis, McGill University (2009)

  29. Phillips, S., Lessard, L.: Flax fibers in musical instrument soundboards. In: Proceedings of ICCM-17 Conference, D 9.19, Edinburgh (2009)

  30. Phillips, S., Lessard, L.: Application of natural fiber composites to musical instrument top plates. J. Compos. Mater. 46, 145–154 (2012)

    Article  Google Scholar 

  31. Sharma, S.K., Shukla, S.R., Rao, R.V.: Performance evaluation of musical instruments using computer controlled test setup. J. Indian Acad. Wood Sci. 8, 158–160 (2011)

    Article  Google Scholar 

  32. Yano, H., Furuta, Y., Nakagaw, H.: Materials for guitar back plates made from sustainable forest resources. J. Acoust. Soc. Am. 101, 1112–1119 (1997)

    Article  Google Scholar 

  33. Besnainou, C.: Composite materials for musical instruments: the maturity. J. Acoust. Soc. Am. 5, 2872–2873 (1998)

    Article  Google Scholar 

  34. Besnainou, C., Vaiedelich, S.: Bow musical instrument made of composite material. U.S. Patent No. 5,171,926.1 (1992)

  35. Decker, J.A.: Graphite-epoxy acoustic guitar technology. MRS Bull. 20, 37–39 (1995)

    Google Scholar 

  36. Decker, J.A., Linda, M., Christopher, J.: Composite-materials acoustic stringed musical instrument. U.S. Patent No. 4,969,381 (1990)

  37. Karlsson, K.F., TomasÅström, B.: Manufacturing and applications of structural sandwich components. Compos. Part A 28, 97–111 (1997)

    Article  Google Scholar 

  38. West Systems: A guide to the principles and practical application of vacuum bagging for laminating composite materials with west system epoxy. http://www.westsystem.com/ss/assets/HowTo-Publications/Vacuum-Bagging-Techniques.pdf (2010). Accessed 23 Jan 2015

  39. Lu, Y.: Comparison of finite element method and modal analysis of violin top plate. Thesis, McGill University (2013)

  40. Dominy, J., Killingback, P.: The development of a carbon fibre violin. In: Proceedings of ICCM-17 Conference, A 6.2, Edinburgh (2009)

  41. Stewart, R.: Carbon fibre producers optimistic in downturn. Reinf. Plast. 54, 18–24 (2010)

    Article  Google Scholar 

  42. Webb, S.: Carbon-fiber cellos no longer playing second-fiddle to wooden instruments. http://www.scientificamerican.com/article/carbon-fiber-cellos (2009). Accessed 5 Dec 2014

  43. Parish, M.: Perfecting the sustainable guitar. http://www.mmrmagazine.com/81-current-issue/spotlight/389-perfecting-the-sustainable-guitar.html (2013). Accessed 15 Dec 2014

  44. Besnainou, C.: Introduction to the use of composite materials in musical instruments. CAS J. 2, 9–10 (2000)

    Google Scholar 

  45. Damodaran, A., Mansour, H., Lessard, L., Scavone, G., Babu, A.S.: Application of composite materials to the chenda, an Indian percussion instrument. Appl. Acoust. 88, 1–5 (2015)

    Article  Google Scholar 

  46. Ono, T., Takahashi, I., Takasu, Y., Miura, Y., Watanabe, U.: Acoustic characteristics of Wadaiko (traditional Japanese drum) with wood plastic shell. Acoust. Sci. Technol. 30, 410–416 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Centre for Interdisciplinary Research in Music Media Technology (CIRMMT) at McGill University and the Department of Foreign affairs and International Trade (DFAIT) Canada. We also thank Mr. Hossein Mansour of CIRMMT and Dr. Iris Bremaud of CNRS, France for stimulating discussion on stringed instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajith Damodaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damodaran, A., Lessard, L. & Suresh Babu, A. An Overview of Fibre-Reinforced Composites for Musical Instrument Soundboards. Acoust Aust 43, 117–122 (2015). https://doi.org/10.1007/s40857-015-0008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-015-0008-5

Keywords

Navigation