Skip to main content
Log in

Site-controlled interlayer coupling in WSe2/2D perovskite heterostructure

单层硒化钨/二维钙钛矿异质结层间耦合强度的定点 调控

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Interlayer excitons (IXs) formed in transition metal dichalcogenides (TMDs)/two-dimensional (2D) perovskite heterostructures are emerging as new platforms in the research of excitons. Compared with IXs in TMD van der Waals heterostructures, IXs can be robustly formed in TMDs/2D perovskite heterostructures regardless of the twist angle and thermal annealing process. Efficient control of interlayer coupling is essential for realizing their functionalities and enhancing their performances. Nevertheless, the study on the control of interlayer coupling strength between TMD and 2D perovskites is elusive. Therefore, we realize the control of interlayer coupling between monolayer WSe2 and (iso-BA)2PbI4 with SiO2 pillars in situ. An abnormal 10-nm blue shift and 2.5 times photoluminescence intensity enhancement were observed for heterostructures on the pillar, which was contrary to the red shift observed in TMD heterobilayers. We attributed the abnormal blue shift to the enhanced interlayer coupling arising from the reduced gap between constituent layers. In addition, IXs became more dominant over intralayer excitons with enhanced coupling. The interlayer coupling could be further engineered by tuning the height (h) and diameter (d) of pillars. In particular, an additional triplet IX showed up for the pillar with an h/d ratio of 0.6 due to the symmetry breaking of monolayer WSe2. The symmetry breaking also induced an anisotropic response of IXs. Our study is beneficial for tuning and enhancing the performance of IX-based devices, exciton localization and quantum emitters.

摘要

与过渡金属硫化物中的层间激子相比, 过渡金属硫化物与二维 钙钛矿间的层间激子有更高的鲁棒性, 且其光学性质与层间旋转角和 是否退火无关. 因此, 过渡金属硫化物与二维钙钛矿间的层间激子正成 为一个新的研究激子的体系. 层间激子的有效控制是实现其功能和提 高其性能的关键, 然而, 目前缺少对过渡金属硫化物与二位钙钛矿间层 间激子有效控制的研究. 本文利用二氧化硅纳米柱实现了单层WSe2和 (iso-BA)2PbI4二维钙钛矿间层间激子的定点调控. 与过渡金属硫化物 层间激子在应力作用下红移的现象相反, 我们在过渡金属硫化物和二 维钙钛矿间的层间激子中观测到10 nm的蓝移以及2.5倍的信号增强. 我们推断该蓝移是由层间间距减小导致的层间耦合强度增大引起的. 该推断也由观测到的层间激子相对自由激子的比例随着耦合强度的增 大而增大的现象验证. 同时, 层间耦合还可以通过改变纳米柱的直径和 高度进行调控. 特别地, 由于对称性被破坏, 我们在直径/高度比为0.6的 纳米柱上观测到三线态层间激子, 且层间激子的各项异性证明其对称 性确实已被破坏. 总之, 本研究对调控基于层间激子的光电器件、激子 局域态和量子光源具有一定促进作用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rivera P, Schaibley JR, Jones AM, et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat Commun, 2015, 6: 6242

    Article  CAS  Google Scholar 

  2. Jiang Y, Chen S, Zheng W, et al. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light Sci Appl, 2021, 10: 72

    Article  CAS  Google Scholar 

  3. Fang H, Battaglia C, Carraro C, et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc Natl Acad Sci USA, 2014, 111: 6198–6202

    Article  CAS  Google Scholar 

  4. Xu W, Liu W, Schmidt JF, et al. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature, 2017, 541: 62–67

    Article  CAS  Google Scholar 

  5. Liu Y, Fang H, Rasmita A, et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci Adv, 2019, 5: eaav4506

    Article  CAS  Google Scholar 

  6. Miller B, Steinhoff A, Pano B, et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett, 2017, 17: 5229–5237

    Article  CAS  Google Scholar 

  7. Liu Y, Dini K, Tan Q, et al. Electrically controllable router of interlayer excitons. Sci Adv, 2020, 6: eaba1830

    Article  CAS  Google Scholar 

  8. Jauregui LA, Joe AY, Pistunova K, et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science, 2019, 366: 870–875

    Article  CAS  Google Scholar 

  9. Unuchek D, Ciarrocchi A, Avsar A, et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature, 2018, 560: 340–344

    Article  CAS  Google Scholar 

  10. Rivera P, Seyler KL, Yu H, et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science, 2016, 351: 688–691

    Article  CAS  Google Scholar 

  11. Rivera P, Yu H, Seyler KL, et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat Nanotech, 2018, 13: 1004–1015

    Article  CAS  Google Scholar 

  12. Sigl L, Sigger F, Kronowetter F, et al. Signatures of a degenerate many-body state of interlayer excitons in a van der Waals heterostack. Phys Rev Res, 2020, 2: 042044

    Article  CAS  Google Scholar 

  13. Wang Z, Rhodes DA, Watanabe K, et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature, 2019, 574: 76–80

    Article  CAS  Google Scholar 

  14. Choi J, Florian M, Steinhoff A, et al. Twist angle-dependent interlayer exciton lifetimes in van der Waals heterostructures. Phys Rev Lett, 2021, 126: 047401

    Article  CAS  Google Scholar 

  15. Yuan L, Zheng B, Kunstmann J, et al. Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers. Nat Mater, 2020, 19: 617–623

    Article  CAS  Google Scholar 

  16. Lukman S, Ding L, Xu L, et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photo-detection. Nat Nanotechnol, 2020, 15: 675–682

    Article  CAS  Google Scholar 

  17. Mukherjee A, Shayan K, Li L, et al. Observation of site-controlled localized charged excitons in CrI3/WSe2 heterostructures. Nat Commun, 2020, 11: 5502

    Article  CAS  Google Scholar 

  18. Joshi J, Zhou T, Krylyuk S, et al. Localized excitons in NbSe2-MoSe2 heterostructures. ACS Nano, 2020, 14: 8528–8538

    Article  CAS  Google Scholar 

  19. Xiao J, Zhang L, Zhou H, et al. Type-II interface band alignment in the vdW PbI2-MoSe2 heterostructure. ACS Appl Mater Interfaces, 2020, 12: 32099–32105

    Article  CAS  Google Scholar 

  20. Chen Y, Liu Z, Li J, et al. Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide hetero-structures. ACS Nano, 2020, 14: 10258–10264

    Article  CAS  Google Scholar 

  21. Liu W, Xing J, Zhao J, et al. Giant two-photon absorption and its saturation in 2D organic-inorganic perovskite. Adv Opt Mater, 2017, 5: 1601045

    Article  Google Scholar 

  22. Wang J, Su R, Xing J, et al. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite. ACS Nano, 2018, 12: 8382–8389

    Article  CAS  Google Scholar 

  23. Blancon JC, Tsai H, Nie W, et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science, 2017, 355: 1288–1292

    Article  CAS  Google Scholar 

  24. Li J, Wang J, Ma J, et al. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nat Commun, 2019, 10: 806

    Article  CAS  Google Scholar 

  25. Stoumpos CC, Cao DH, Clark DJ, et al. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem Mater, 2016, 28: 2852–2867

    Article  CAS  Google Scholar 

  26. Tsai H, Nie W, Blancon JC, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536: 312–316

    Article  CAS  Google Scholar 

  27. Tongay S, Fan W, Kang J, et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett, 2014, 14: 3185–3190

    Article  CAS  Google Scholar 

  28. Ke L, van Schilfgaarde M. Band-filling effect on magnetic anisotropy using a Green’s function method. Phys Rev B, 2015, 92: 241408

    Article  Google Scholar 

  29. Xia J, Yan J, Wang Z, et al. Strong coupling and pressure engineering in WSe2-MoSe2 heterobilayers. Nat Phys, 2021, 17: 92–98

    Article  CAS  Google Scholar 

  30. He Y, Yang Y, Zhang Z, et al. Strain-induced electronic structure changes in stacked van der Waals heterostructures. Nano Lett, 2016, 16: 3314–3320

    Article  CAS  Google Scholar 

  31. Cho C, Wong J, Taqieddin A, et al. Highly strain-tunable interlayer excitons in MoS2/WSe2 heterobilayers. Nano Lett, 2021, 21: 3956–3964

    Article  CAS  Google Scholar 

  32. Wang W, Ma X. Strain-induced trapping of indirect excitons in MoSe2/WSe2 heterostructures. ACS Photonics, 2020, 7: 2460–2467

    Article  CAS  Google Scholar 

  33. Castellanos-Gomez A, Roldán R, Cappelluti E, et al. Local strain engineering in atomically thin MoS2. Nano Lett, 2013, 13: 5361–5366

    Article  CAS  Google Scholar 

  34. Li W, Lu X, Dubey S, et al. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat Mater, 2020, 19: 624–629

    Article  CAS  Google Scholar 

  35. Wang F, Wang J, Guo S, et al. Tuning coupling behavior of stacked heterostructures based on MoS2, WS2, and WSe2. Sci Rep, 2017, 7: 44712

    Article  CAS  Google Scholar 

  36. Alexeev EM, Mullin N, Ares P, et al. Emergence of highly linearly polarized interlayer exciton emission in MoSe2/WSe2 heterobilayers with transfer-induced layer corrugation. ACS Nano, 2020, 14: 11110–11119

    Article  CAS  Google Scholar 

  37. Tripathi LN, Iff O, Betzold S, et al. Spontaneous emission enhancement in strain-induced WSe2 monolayer-based quantum light sources on metallic surfaces. ACS Photonics, 2018, 5: 1919–1926

    Article  CAS  Google Scholar 

  38. Qiu DY, Cao T, Louie SG. Nonanalyticity, valley quantum phases, and lightlike exciton dispersion in monolayer transition metal dichalcogenides: Theory and first-principles calculations. Phys Rev Lett, 2015, 115: 176801

    Article  Google Scholar 

  39. Hanbicki AT, Chuang HJ, Rosenberger MR, et al. Double indirect interlayer exciton in a MoSe2/WSe2 van der Waals heterostructure. ACS Nano, 2018, 12: 4719–4726

    Article  CAS  Google Scholar 

  40. Zhang L, Gogna R, Burg GW, et al. Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Phys Rev B, 2019, 100: 041402

    Article  CAS  Google Scholar 

  41. Yu H, Liu GB, Yao W. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater, 2018, 5: 035021

    Article  Google Scholar 

  42. Baranowski M, Surrente A, Klopotowski L, et al. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett, 2017, 17: 6360–6365

    Article  CAS  Google Scholar 

  43. Kormányos A, Zólyomi V, Drummond ND, et al. Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys Rev X, 2014, 4: 011034

    Google Scholar 

  44. Molas MR, Faugeras C, Slobodeniuk AO, et al. Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Mater, 2017, 4: 021003

    Article  Google Scholar 

  45. Yuan L, Wang T, Zhu T, et al. Exciton dynamics, transport, and annihilation in atomically thin two-dimensional semiconductors. J Phys Chem Lett, 2017, 8: 3371–3379

    Article  CAS  Google Scholar 

  46. Zhang J, Zhu X, Wang M, et al. Establishing charge-transfer excitons in 2D perovskite heterostructures. Nat Commun, 2020, 11: 2618

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0704403), the National Natural Science Foundation of China (62005091 and 62074064), Hubei Provincial Natural Science Foundation (2020CFB194), and Huazhong University of Science and Technology (HUST) grant (2019kfyXJJS046).

Author information

Authors and Affiliations

Authors

Contributions

Wen X and Li D conceived the idea and supervised the project; Wei Q prepared the heterostructures and conducted the optical measurement; Hu J synthesized 2D perovskites; Chen Y, Liu Z, and Lin T helped in TMD transfer and EBL fabrication. All authors analyzed the data and commented on the manuscript.

Corresponding authors

Correspondence to Xinglin Wen  (温兴林) or Dehui Li  (李德慧).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Qinglin Wei received her BS degree from Huazhong University of Science and Technology (HUST) in 2019. She is currently pursuing her Master degree at the School of Optical and Electronic Information, HUST. Her research focuses on spectroscopy of transition metal dichalcogenides, two-dimensional perovskites and their heterostructures.

Xinglin Wen received his BS degree in physics from Wuhan University in 2011 and PhD degree from Nanyang Technological University in 2016. He was a post-doctor at Nanyang Technological University from 2016 to 2018. He is currently an associate professor at the School of Optical and Electronic Information, HUST. His research interests include two-dimensional materials, plasmonics and plasmon-exciton coupled system.

Dehui Li received his BS degree in physics from Xi’an Jiaotong University in 2006 and his MS degree from the Institute of Modern Physics, Chinese Academy of Sciences in 2009. He obtained his PhD degree from Nanyang Technological University in 2013. He was a post-doctor at the University of California, Los Angeles from 2013 to 2016. Currently, he is a professor at the School of Optical and Electronic Information, HUST. His research focuses on the synthesis and optoelectronic properties of functional semiconducting nanomaterials and heterostructures.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Wen, X., Hu, J. et al. Site-controlled interlayer coupling in WSe2/2D perovskite heterostructure. Sci. China Mater. 65, 1337–1344 (2022). https://doi.org/10.1007/s40843-021-1911-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1911-6

Keywords

Navigation