Skip to main content
Log in

Memristive device with highly continuous conduction modulation and its underlying physical mechanism for electronic synapse application

具有高度连续传导调制的记忆器件及其在电子突触应用中的基本物理机制

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Emerging memristors can be used as artificial synapses for emulating memory and computational functions. In this work, inspired by the memristive properties of tantalum dioxide, we designed a memristor with a structure of TiN/Ta2O5−x/HfxZr1−xO2 (x=0.5)/Pt (TTHZOP). The device conductance can be continuously tuned by adjusting the voltage pulse parameters (i.e., amplitude, width, and number) of voltage sweeps. Furthermore, for both of negative and positive parts, the current-voltage curves of the sweep cycle appear to better adjust the gradual distribution in successive twenty cycles. According to the fine fitting results of twenty positive and negative current-voltage (I–V) curves, the probability of an electron jumping over an energy barrier and the width of the energy barrier were analyzed in detail. It is found that the electron tunneling mechanism at the interface is responsible for gradual conduction change under successive external electrical stimulation consisting of both bulk and interface effects. The proposed TTHZOP memristor is a promising candidate in potential applications that mimic artificial biosynaptic adaptation and analog brain computation.

摘要

新兴的忆阻器可以用作模拟记忆和计算功能的人工突触. 在这项工作中, 受钽氧化物记忆特性的启发, 我们设计了一种结构为TiN/Ta2O5−x/HfxZr1−xO2 (x=0.5)/Pt (TTHZOP)的忆阻器. 通过调整电压扫描的电压脉冲参数(即振幅、 脉宽和数量), 可以连续调节器件的电导. 此外, 对于正负两部分, 扫描周期的电流-电压(I-V)曲线在连续20个周期内似乎更好地调整了渐进分布. 根据20条正、 负IV曲线的精细拟合结果, 详细分析了电子跃迁势垒的概率和势垒宽度. 结果表明, 在连续的体效应和界面效应共同作用下, 界面处的电子隧穿机制导致导电性逐渐变化. 本文所提出的TTHZOP忆阻器在模拟人工生物突触适应和模拟脑计算方面具有潜在的应用价值.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao Q, Xie Z, Peng YP. Current status and prospects of memristors based on novel 2D materials. Mater Horiz, 2020, 7: 1495–1518

    Article  CAS  Google Scholar 

  2. Yan X, Yin J, Guo HX, et al. Bipolar resistive switching performance of the nonvolatile memory cells based on (AgI)02(Ag2-MoO4)08 solid electrolyte films. J Appl Phys, 2009, 106: 054501

    Article  CAS  Google Scholar 

  3. Alibart F, Gao L, Hoskins BD, et al. High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology, 2012, 23: 075201

    Article  CAS  Google Scholar 

  4. Chua L. Memristor: the missing circuit element. IEEE Trans Circuit Theor, 1971, 18: 507–519

    Article  Google Scholar 

  5. Strukov DB, Snider GS, Stewart DR, et al. The missing memristor found. Nature, 2008, 453: 80–83

    Article  CAS  Google Scholar 

  6. Yang JJ, Strukov DB, Stewart DR. Memristive devices for computing. Nat Nanotech, 2013, 8: 13–24

    Article  CAS  Google Scholar 

  7. Tan ZH, Yang R, Terabe K, et al. Synaptic metaplasticity realized in oxide memristive devices. Adv Mater, 2016, 28: 377–384

    Article  CAS  Google Scholar 

  8. Hasegawa T, Ohno T, Terabe K, et al. Learning abilities achieved by a single solid-state atomic switch. Adv Mater, 2010, 22: 1831–1834

    Article  CAS  Google Scholar 

  9. Jo SH, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett, 2010, 10: 1297–1301

    Article  CAS  Google Scholar 

  10. Guo R, Lin W, Yan X, et al. Ferroic tunnel junctions and their application in neuromorphic networks. Appl Phys Rev, 2020, 7: 011304

    Article  CAS  Google Scholar 

  11. Wang Z, Joshi S, Savel’Ev SE, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat Mater, 2017, 16: 101–108

    Article  CAS  Google Scholar 

  12. Serb A, Bill J, Khiat A, et al. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat Commun, 2016, 7: 12611

    Article  CAS  Google Scholar 

  13. Berdan R, Vasilaki E, Khiat A, et al. Emulating short-term synaptic dynamics with memristive devices. Sci Rep, 2016, 6: 18639

    Article  CAS  Google Scholar 

  14. Tuma T, Pantazi A, Le Gallo M, et al. Stochastic phase-change neurons. Nat Nanotech, 2016, 11: 693–699

    Article  CAS  Google Scholar 

  15. Terabe K, Hasegawa T, Nakayama T, et al. Quantized conductance atomic switch. Nature, 2005, 433: 47–50

    Article  CAS  Google Scholar 

  16. Waser R, Aono M. Nanoionics-based resistive switching memories. Nat Mater, 2007, 6: 833–840

    Article  CAS  Google Scholar 

  17. Yan X, Zhang L, Chen H, et al. Graphene oxide quantum dots based memristors with progressive conduction tuning for artificial synaptic learning. Adv Funct Mater, 2018, 28: 1803728

    Article  CAS  Google Scholar 

  18. Wedig A, Luebben M, Cho DY, et al. Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat Nanotech, 2016, 11: 67–74

    Article  CAS  Google Scholar 

  19. Li S, Barbera D, Vuillaume F. Filamentary switching: synaptic plasticity through device volatility. ACS Nano, 2015, 9: 941–949

    Article  CAS  Google Scholar 

  20. Lim H, Kim I, Kim JS, et al. Short-term memory of TiO2-based electrochemical capacitors: empirical analysis with adoption of a sliding threshold. Nanotechnology, 2013, 24: 384005

    Article  CAS  Google Scholar 

  21. Yan X, Zhao Q, Chen AP, et al. Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing. Small, 2019, 15: 1901423

    Article  CAS  Google Scholar 

  22. Yu S, Wu Y, Jeyasingh R, et al. An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans Electron Devices, 2011, 58: 2729–2737

    Article  CAS  Google Scholar 

  23. Kim S, Du C, Sheridan P, et al. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett, 2015, 15: 2203–2211

    Article  CAS  Google Scholar 

  24. Indiveri G, Linares-Barranco B, Legenstein R, et al. Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology, 2013, 24: 384010

    Article  CAS  Google Scholar 

  25. Li Y, Zhong Y, Zhang J, et al. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Sci Rep, 2014, 4: 4906

    Article  CAS  Google Scholar 

  26. Ascoli A, Tetzlaff R, Chua L. Robust simulation of a TaO memristor model. Radioengineering, 2015, 24: 384–392

    Article  Google Scholar 

  27. Miao F, Yi W, Goldfarb I, et al. Continuous electrical tuning of the chemical composition of TaOx-based memristors. ACS Nano, 2012, 6: 2312–2318

    Article  CAS  Google Scholar 

  28. Hur JH, Lee MJ, Lee CB, et al. Modeling for bipolar resistive memory switching in transition-metal oxides. Phys Rev B, 2010, 82: 155321

    Article  CAS  Google Scholar 

  29. Lee MJ, Lee CB, Lee D, et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat Mater, 2011, 10: 625–630

    Article  CAS  Google Scholar 

  30. Yoon JH, Song SJ, Yoo IH, et al. Highly uniform, electroforming-free, and self-rectifying resistive memory in the Pt/Ta2O5/HfO2−x/TiN structure. Adv Funct Mater, 2014, 24: 5086–5095

    Article  CAS  Google Scholar 

  31. Yoong HY, Wu H, Zhao J, et al. Epitaxial ferroelectric Hf0.5Zr0.5O2 thin films and their implementations in memristors for brain-inspired computing. Adv Funct Mater, 2018, 28: 1806037

    Article  CAS  Google Scholar 

  32. Fan Z, Deng J, Wang J, et al. Ferroelectricity emerging in strained (111)-textured ZrO2 thin films. Appl Phys Lett, 2016, 108: 012906

    Article  CAS  Google Scholar 

  33. Yi W, Savel’Ev SE, Medeiros-Ribeiro G, et al. Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors. Nat Commun, 2016, 7: 11142

    Article  CAS  Google Scholar 

  34. Zhang JJ, Sun HJ, Li Y, et al. AgInSbTe memristor with gradual resistance tuning. Appl Phys Lett, 2013, 102: 183513

    Article  CAS  Google Scholar 

  35. Gong N, Idé T, Kim S, et al. Signal and noise extraction from analog memory elements for neuromorphic computing. Nat Commun, 2018, 9: 2102

    Article  CAS  Google Scholar 

  36. Dayan P, Abbott L. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge: MIT Press, 2001

    Google Scholar 

  37. Bell CC, Han VZ, Sugawara Y, et al. Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature, 1997, 387: 278–281

    Article  CAS  Google Scholar 

  38. Rodríguez-Moreno A, Paulsen O. Spike timing-dependent long-term depression requires presynaptic NMDA receptors. Nat Neurosci, 2008, 11: 744–745

    Article  CAS  Google Scholar 

  39. Abbott LF, Nelson SB. Synaptic plasticity: taming the beast. Nat Neurosci, 2000, 3: 1178–1183

    Article  CAS  Google Scholar 

  40. Zhang LI, Tao HW, Holt CE, et al. A critical window for cooperation and competition among developing retinotectal synapses. Nature, 1998, 395: 37–44

    Article  CAS  Google Scholar 

  41. Yu S, Wong HSP. A phenomenological model for the reset mechanism of metal oxide RRAM. IEEE Electron Device Lett, 2010, 31: 1455–1457

    Article  CAS  Google Scholar 

  42. Lu Y, Gao B, Fu Y, et al. A simplified model for resistive switching of oxide-based resistive random access memory devices. IEEE Electron Device Lett, 2012, 33: 306–308

    Article  CAS  Google Scholar 

  43. Charlesby A. Ionic current and film growth of thin oxide layers on aluminium. Proc Phys Soc B, 1953, 66: 317–329

    Article  Google Scholar 

  44. Sze SM. Semiconductor Devices: Physics and Technology. New York: John Wiley & Sons, 2008

    Google Scholar 

  45. Ivanov MV, Perevalov TV, Aliev VS, et al. Ab initio simulation of the electronic structure of δ-Ta2O5 with oxygen vacancy and comparison with experiment. J Exp Theor Phys, 2011, 112: 1035–1041

    Article  CAS  Google Scholar 

  46. Khanuja M, Sharma H, Mehta BR, et al. XPS depth-profile of the suboxide distribution at the native oxide/Ta interface. J Electron Spectr Related Phenomena, 2009, 169: 41–45

    Article  CAS  Google Scholar 

  47. Wang SJ, Ong CK. Epitaxial Y-stabilized ZrO2 films on silicon: dynamic growth process and interface structure. Appl Phys Lett, 2002, 80: 2541–2543

    Article  CAS  Google Scholar 

  48. Espitia-Cabrera I, Orozco-Hernández H, Torres-Sánchez R, et al. Synthesis of nanostructured zirconia electrodeposited films on AISI 316L stainless steel and its behaviour in corrosion resistance assessment. Mater Lett, 2004, 58: 191–195

    Article  CAS  Google Scholar 

  49. Kaufmann R, Klewe-Nebenius H, Moers H, et al. XPS studies of the thermal behaviour of passivated zircaloy-4 surfaces. Surf Interface Anal, 1988, 11: 502–509

    Article  CAS  Google Scholar 

  50. Renault O, Samour D, Damlencourt JF, et al. HfO2/SiO2 interface chemistry studied by synchrotron radiation X-ray photoelectron spectroscopy. Appl Phys Lett, 2002, 81: 3627–3629

    Article  CAS  Google Scholar 

  51. Jung HS, Kim YS, Kim JP, et al. Improved current performance of CMOSFETs with nitrogen incorporated HfO2-Al2O3 laminate gate dielectric. In: International Electron Devices Meeting. San Francisco: IEEE, 2002. 853–856

    Chapter  Google Scholar 

  52. Xue KH, Blaise P, Fonseca LRC, et al. Prediction of semimetallic tetragonal Hf2O3 and Zr2O3 from first principles. Phys Rev Lett, 2013, 110: 065502

    Article  CAS  Google Scholar 

  53. Kan-Hao Xue, Traore B, Blaise P, et al. A combined ab initio and experimental study on the nature of conductive filaments in Pt/HfO2/Pt resistive random access memory. IEEE Trans Electron Devices, 2014, 61: 1394–1402

    Article  CAS  Google Scholar 

  54. Zhang J, Oganov AR, Li X, et al. Pressure-induced novel compounds in the Hf-O system from first-principles calculations. Phys Rev B, 2015, 92: 184104

    Article  CAS  Google Scholar 

  55. Yan XB, Jia XL, Yang T, et al. Remarkable charge-trapping performance based in Zr0.5Hf0.5O2 with nanocrystal Ba0.6Sr0.4TiO3 blocking layer for nonvolatile memory device. Phys Lett A, 2016, 380: 3509–3513

    Article  CAS  Google Scholar 

  56. Luna-Sánchez RM, González-Martínez I. Mobility degradation analysis for La2O3 nMOSFET. ECS Trans, 2006, 2: 329–338

    Article  Google Scholar 

  57. Park J, Kwon DH, Park H, et al. Role of oxygen vacancies in resistive switching in Pt/Nb-doped SrTiO3. Appl Phys Lett, 2014, 105: 183103

    Article  CAS  Google Scholar 

  58. Sun X, Li G, Chen L, et al. Bipolar resistance switching characteristics with opposite polarity of Au/SrTiO3/Ti memory cells. Nanoscale Res Lett, 2011, 6: 599

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61674050 and 61874158), the Outstanding Youth Funding of Hebei University (A2018201231), the Support Program for the Top Young Talents of Hebei Province (70280011807), the Hundred Persons Plan of Hebei Province (E2018050004 and E2018050003) and the Supporting Plan for 100 Excellent Innovative Talents in Colleges and Universities of Hebei Province (SLRC2019018).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhang J developed the concept and conceived the experiments; Yang T drafted the manuscript; Wang J added the experimental data and revised the manuscript; Yan X drafted and revised the manuscript. All authors discussed and revised the manuscript.

Corresponding author

Correspondence to Xiaobing Yan  (闫小兵).

Additional information

Jing Zhang received her BSc degree from the School of Electronic and Information Engineering, Hebei University in 2018. She is currently a ME student in the University of Chinese Academy of Sciences. Her research interest is focused on the field of memristors

Tao Yang received his BSc degree from the School of Electronic and Information Engineering, Hebei University in 2017. He is currently a ME student in the University of Chinese Academy of Sciences. His research interests are focused on the fields of memristors and 3D-NAND flash memory

Jingjuan Wang received her BSc degree in communication engineering from the Department of Electronic Information Engineering, Tangshan University, China in 2016. She is currently a DE student at Hebei University Her current research interest is focused on the field of memristors

Xiaobing Yan is currently a professor at the School of Electronic and Information Engineering, Hebei University He received his PhD degree from Nanjing University in 2011. From 2014 to 2016, he held the Research Fellow position at the National University of Singapore. His current research interest is in the field of memristors.

Supplementary Information

40843_2020_1367_MOESM1_ESM.pdf

Memristive device with highly continuous conduction modulation and its underlying physical mechanism for electronic synapse application

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yang, T., Wang, J. et al. Memristive device with highly continuous conduction modulation and its underlying physical mechanism for electronic synapse application. Sci. China Mater. 64, 179–188 (2021). https://doi.org/10.1007/s40843-020-1367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1367-x

Keywords

Navigation