Skip to main content
Log in

Organic Memristive Devices for Neuromorphic Applications

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The emulation of the hierarchical organization of the brain is nowadays considered a very promising approach for the realization of an efficient brain-machine interface and neuronal prosthesis. This bottom-up approach is possible only starting from non-classical electronic elements able to emulate synaptic functionalities such as long-term plasticity and short-term plasticity (STP). These elements then must be interfaced with technology able to mimic fundamental network properties (summation, transfer, and threshold). In this mini review, recent advances in the emulation of this hierarchical approach, obtained using a 3-terminal electronic device (organic memristive device) whose functioning is based on the redox activity of an organic thin film, are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Indiveri, G., et al. (2013). Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology, 24(38), 384010.

    Google Scholar 

  2. van De Burgt, Y., et al. (2018). Organic electronics for neuromorphic computing. Nature Electronics, 1.7, 386–397.

  3. Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. J. Wiley; London: Chapman & Hall.

  4. Purves, D., et al. (2008). Cognitive neuroscience. Sunderland: Sinauer Associates, Inc..

    Google Scholar 

  5. Martin, S. J., Grimwood, P. D., & Morris, R. G. (2000). Synaptic plasticity and memory: An evaluation of the hypothesis. Annual Review of Neuroscience, 23(1), 649–711.

    Google Scholar 

  6. Yang, J. J., Strukov, D. B., & Stewart, D. R. (2013). Memristive devices for computing. Nature Nanotechnology, 8(1), 13.

    Google Scholar 

  7. Burr, G. W., et al. (2017). Neuromorphic computing using non-volatile memory. Advances in Physics: X, 2(1), 89–124.

    MathSciNet  Google Scholar 

  8. Ohno, T., et al. (2011). Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nature Materials, 10(8), 591.

    Google Scholar 

  9. Jo, S. H., et al. (2010). Nanoscale memristor device as synapse in neuromorphic systems. Nano Letters, 10(4), 1297–1301.

    Google Scholar 

  10. Chua, L. (1971). Memristor-the missing circuit element. IEEE Transactions on circuit theory, 18(5), 507–519.

    Google Scholar 

  11. Seo, K., et al. (2011). Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology, 22(25), 254023.

    Google Scholar 

  12. Snider, G. S. (2008) Spike-timing-dependent learning in memristive nanodevices. In Proceedings of the 2008 IEEE International Symposium on Nanoscale Architectures. Piscataway: IEEE

  13. He, W., et al. (2014). Enabling an integrated rate-temporal learning scheme on memristor. Scientific Reports, 4, 4755.

    Google Scholar 

  14. Battistoni, S., Erokhin, V., & Iannotta, S. (2019). Frequency driven organic memristive devices for neuromorphic short term and long term plasticity. Organic Electronics, 65, 434–438.

    Google Scholar 

  15. Kaneto, K., Asano, T., & Takashima, W. (1991). Memory device using a conducting polymer and solid polymer electrolyte. Japanese Journal of Applied Physics, 30(2A), L215.

    Google Scholar 

  16. Lai, Q., et al. (2010). Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions. Advanced Materials, 22(22), 2448–2453.

    Google Scholar 

  17. Gkoupidenis, P., et al. (2015). Synaptic plasticity functions in an organic electrochemical transistor. Applied Physics Letters, 107(26), 263302.

    Google Scholar 

  18. Liu, G., et al. (2016). Organic biomimicking memristor for information storage and processing applications. Advanced Electronic Materials, 2(2), 1500298.

    Google Scholar 

  19. Xu, W., et al. (2016). Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Science Advances, 2(6), e1501326.

    Google Scholar 

  20. van de Burgt, Y., et al. (2017). A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nature Materials, 16(4), 414.

    Google Scholar 

  21. Battistoni, S., et al. (2019). Synaptic response in organic electrochemical transistor gated by a graphene electrode. Flexible and Printed Electronics, 4(4), 044002.

    Google Scholar 

  22. Battistoni, S., et al. On the interpretation of hysteresis loop for electronic and ionic currents in organic memristive devices. Physica Status Solidi (a). n/a(n/a): p. 1900985.

  23. Lapkin, D., et al. (2018). Polyaniline-based memristive microdevice with high switching rate and endurance. Applied Physics Letters, 112(4), 043302.

    Google Scholar 

  24. Erokhin, V., Berzina, T., & Fontana, M. P. (2005). Hybrid electronic device based on polyaniline-polyethyleneoxide junction. Journal of Applied Physics, 97(6), 064501.

    Google Scholar 

  25. Gkoupidenis, P., et al. (2016) Orientation selectivity in a multi- gated organic electrochemical transistor. Nature Publishing Group, (May): p. 1--6.

  26. Gkoupidenis, P., Koutsouras, D. A., & Malliaras, G. G. (2017). Neuromorphic device architectures with global connectivity through electrolyte gating. Nature Communications, 8(1), 1–8.

    Google Scholar 

  27. Gkoupidenis, P., et al. (2015). Neuromorphic functions in PEDOT: PSS organic electrochemical transistors. Advanced Materials, 27(44), 7176–7180.

    Google Scholar 

  28. Koutsouras, D. A., et al. (2019). Functional connectivity of organic neuromorphic devices by global voltage oscillations. Advanced Intelligent Systems, 1(1), 1900013.

    Google Scholar 

  29. Berzina, T., Erokhin, V., & Fontana, M. (2007). Spectroscopic investigation of an electrochemically controlled conducting polymer-solid electrolyte junction. Journal of Applied Physics, 101(2), 024501.

    Google Scholar 

  30. Berzina, T., et al. (2009). Electrochemical control of the conductivity in an organic memristor: A time-resolved X-ray fluorescence study of ionic drift as a function of the applied voltage. ACS Applied Materials & Interfaces, 1(10), 2115–2118.

    Google Scholar 

  31. Battistoni, S., Dimonte, A., & Erokhin, V. (2016). Spectrophotometric characterization of organic memristive devices. Organic Electronics, 38, 79–83.

    Google Scholar 

  32. Erokhin, V., et al. (2011). Material memristive device circuits with synaptic plasticity: Learning and memory. BioNanoScience, 1(1–2), 24–30.

    Google Scholar 

  33. Smerieri, A., et al. (2008). Polymeric electrochemical element for adaptive networks: Pulse mode. Journal of Applied Physics, 104(11), 114513.

    Google Scholar 

  34. Chang, T., et al. (2011). Synaptic behaviors and modeling of a metal oxide memristive device. Applied Physics A, 102(4), 857–863.

    Google Scholar 

  35. Ielmini, D. & Milo, V. (2019). Brain-inspired memristive neural networks for unsupervised learning, in Handbook of memristor networks. Springer. p. 495–525.

  36. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. Psychology of Learning and Motivation, 2.4, 89–195.

  37. Battistoni, S., Erokhin, V., & Iannotta, S. (2017). Emulation with organic memristive devices of impairment of LTP mechanism in neurodegenerative disease pathology. Neural Plasticity, 2017, 8. https://doi.org/10.1155/2017/6090312.

  38. Juzekaeva, E., et al. (2019). Coupling cortical neurons through electronic memristive synapse. Advanced Materials Technologies, 4(1), 1800350.

    Google Scholar 

  39. Erokhin, V., Berzina, T., & Fontana, M. (2007). Polymeric elements for adaptive networks. Crystallography Reports, 52(1), 159–166.

    Google Scholar 

  40. Bayat, F. M., et al. (2018). Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nature Communications, 9(1), 2331.

    Google Scholar 

  41. Alibart, F., Zamanidoost, E., & Strukov, D. B. (2013). Pattern classification by memristive crossbar circuits using ex situ and in situ training. Nature Communications, 4, 2072.

    Google Scholar 

  42. Demin, V., et al. (2015). Hardware elementary perceptron based on polyaniline memristive devices. Organic Electronics, 25, 16–20.

    Google Scholar 

  43. Emelyanov, A., et al. (2016). First steps towards the realization of a double layer perceptron based on organic memristive devices. AIP Advances, 6(11), 111301.

    Google Scholar 

  44. Eryilmaz, S. B., et al. (2014). Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array. Frontiers in Neuroscience, 8, 205.

    Google Scholar 

  45. Kaneko, Y., Nishitani, Y., & Ueda, M. (2014). Ferroelectric artificial synapses for recognition of a multishaded image. IEEE Transactions on Electron Devices, 61(8), 2827–2833.

    Google Scholar 

  46. Li, C., et al. (2018). Analogue signal and image processing with large memristor crossbars. Nature Electronics, 1(1), 52.

    Google Scholar 

  47. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386.

    Google Scholar 

  48. Pedretti, G., et al. (2017). Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity. Scientific Reports, 7(1), 1–10.

    MathSciNet  Google Scholar 

  49. Prezioso, M., et al. (2015). Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 521(7550), 61–64.

    Google Scholar 

  50. Mikhaylov, A., et al. (2020). Neurohybrid memristive CMOS-integrated systems for biosensors and neuroprosthetics. Frontiers in Neuroscience, 14, 358.

    Google Scholar 

  51. Juarez-Hernandez, L. J., et al. (2016). Bio-hybrid interfaces to study neuromorphic functionalities: New multidisciplinary evidences of cell viability on poly (anyline)(PANI), a semiconductor polymer with memristive properties. Biophysical Chemistry, 208, 40–47.

    Google Scholar 

Download references

Funding

This work has been performed in the framework of MaDEleNA project “Developing and studying novel intelligent nano materials and devices towards adaptive electronics and neuroscience applications” financed by Provincia Autonoma di Trento, call Grandi Progetti 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Battistoni.

Ethics declarations

Conflict of Interest

The author declares that she has no conflict of interest.

Research Involving Humans and Animals Statement

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battistoni, S. Organic Memristive Devices for Neuromorphic Applications. BioNanoSci. 11, 227–231 (2021). https://doi.org/10.1007/s12668-020-00808-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-020-00808-z

Keywords

Navigation